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1. Introduction. Suppose that a sample of n individuals has possible-
censored survival times

Y1 ≤ Y2 ≤ . . . ≤ Yn (1.1)

Let δi = 1 if the ith time Yi is an observed death and δi = 0 if it was a
right-censored event: That is, the individual was alive at time Yi, but was
last seen at that time. If Ti (1 ≤ i ≤ n) are the true survival or failure times,
then Yi = Ti if δi = 1 and Yi < Ti if δi = 0, in which case the true failure
time Ti is unknown.

We also assume d-dimensional covariate vectors X1, X2, . . . , Xn for the
n individuals in (1.1). The components of Xi might be age, income status,
etc. The basic data for (1.1) is the set of triples (Yi, δi, Xi) for 1 ≤ i ≤ n.
The most important statistical questions are connected with estimating the
effect of the covariates Xi on the true survival times Ti.

Let
Ỹ1 < Ỹ2 < . . . < Ỹm (1.2)

be the distinct survival times in (1.1). At each time Y = Ỹj , let dj be the
number of observed deaths and aj the number of censored events. Then
n =

∑m
j=1(dj + aj) is the total sample size and nobs =

∑m
j=1 dj =

∑n
i=1 δi is

the total number of observed deaths. The number of distinct observed death
times is r =

∑m
j=1 I[dj>0] ≤ m.

The basic statistical model that we describe below is essentially due to
Kalbfleisch (1978). See Clayton (1991) and Ibrahim et al. (2001) for addi-
tional discussion and details, and Lee and Wang (2003) for an introduction
to survival analysis. The model described below is nonparametric in flavor,
but still allows tied survival-time data to be handled in a natural way. The
likelihood formula that we derive below for tied data appears to be new.
Previous work on this model has mostly assumed survival times (1.1) that
are either without ties or else with grouped survival times (Kalbfleisch 1978,
Ibrahim et al. 2001).

2. A Survival Model. Let Y be the true lifetime of a random individual
with covariates X. By definition, the survival function is

SX(t) = PX(Y > t) = exp
(−HX(t)

)
= exp

(
−

∫ t

0

hX(dy)
)

(2.1)
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where HX(t) is a right-continuous increasing function with HX(0) = 0 and
hX(dy) is the related Lebesgue-Stieltjes measure. The function HX(t) is one
form of the cumulative hazard function and hX(dy) the instantaneous hazard
measure (or hazard rate). The Proportional Hazards assumption is

hX(dy) = eβXh(dy) so that HX(t) = eβXH(t) (2.2)

for some d-dimensional vector of parameters β, where βX in (2.2) is the dot
product. One of the purposes of the model is to estimate β from the data
and to test each component of β to find out whether that component of X
has a statistically significant effect on the survival times Y . A secondary
goal is to estimate the baseline hazard density h(dy), which would allow us
to estimate the expected survival time distribution SX(t) for an individual
whose covariates are X, even if X is not among the covariate vectors Xi in
the data.

In principle, the likelihood of the data (Yi, δi, Xi) in (1.1) is

L =


 ∏

[δi=0]

PXi(Y > Yi)





 ∏

[δi=1]

PXi(Y = Yi)


 (2.3)

where PX(Y = Yi) is with respect to some natural measure on the real line.
Many inferential methods in statistics are based on finding the parameters
that are the most likely for known data, in the sense of those parameters
that have the largest value of L.

To derive an explicit formula for (2.3), choose numbers ∆j > 0 such
that Ỹj + ∆j < Ỹj+1 −∆j+1 for all j and define the binned likelihood

L∆ =
n∏

i=1

{
PXi(Y > Ỹj + ∆j) if δi = 0

PXi(Ỹj −∆j < Y ≤ Ỹj + ∆j) if δi = 1
(2.4)

By definition, the true lifetime Ti > Ỹj for censored individuals with Yi = Ỹj ,
so that (2.4) is the appropriate probability if the ∆j > 0 are sufficiently
small. The likelihood (2.4) should be asymptotically proportional to (2.3) in
the limit as ∆j → 0.

We can write (2.4) in terms of the survival function SX(t) in (2.1) as

n∏

i=1

{
SXi(Ỹj + ∆j) if δi = 0

SXi(Ỹj −∆j)− SXi(Ỹj + ∆j) if δi = 1

=
n∏

i=1

exp
(
−

∫ Ỹj−∆j

0

hXi(dy)
)





exp
(
− ∫ Ỹj+∆j

Ỹj−∆j

hXi(dy)
)

if δi = 0

1− exp
(
− ∫ Ỹj+∆j

Ỹj−∆j

hXi(dy)
)

if δi = 1
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Define

Zj =
∫ Ỹj−∆j

Yj−1+∆j−1

h(dy) and Zj0 =
∫ Ỹj+∆j

Ỹj−∆j

h(dy) (2.5)

Then
∫ Ỹj−∆j

0

h(dy) = Zj +
j−1∑

k=1

(
Zk + Zk0

)
=

j∑

k=1

Zk +
j−1∑

k=1

Zk0

so that
n∑

i=1

∫ Ỹj−∆j

0

hXi(dy) =
n∑

i=1

eβXi

∫ Ỹj−∆j

0

h(dy)

=
m∑

j=1




∑

[Yi=Ỹj ]

eβXi




(
j∑

k=1

Zk +
j−1∑

k=1

Zk0

)

=
m∑

k=1

Zk

m∑

j=k




∑

[Yi=Ỹj ]

eβXi


 +

m∑

k=1

Zk0

m∑

j=k+1




∑

[Yi=Ỹj ]

eβXi




=
m∑

j=1

(
ZjRj(β) + Zj0Rj+1(β)

)
(2.6)

In (2.6), Rj(β) is the risk sum

Rj(β) =
m∑

k=j




∑

[Yi=Ỹk]

eβXi


 =

∑

[Yi≥Ỹj ]

eβXi (2.7)

corresponding to the individuals who are at risk immediately before time Ỹj .
We can then write the binned likelihood (2.4) as

L∆ = exp


−

m∑

j=1

(
ZjRj(β) + Zj0Rj+1(β)

)



m∏

j=1

∏
[

Yi=Ỹj

δi=0

] exp
(−Zj0e

βXi
)

×
m∏

j=1

∏

[Yi=Ỹj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

= exp

(
−

m∑

j=1

(
ZjRj(β) + Zj0R

0
j (β) + Sj(Zj0, β)

))
(2.8)
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where

Sj(Zj0, β) =
∑

[Yi=Ỹj ,δi=1]

log
(
1− exp

(−Zj0e
βXi

))
(2.9)

is a sum over the observed deaths at times Yi = Ỹj and

R0
j (β) =

∑

[Yi=Ỹj ,δi=0]

eβXi +
∑

[Yi>Ỹj ]

eβXi (2.10)

is the risk sum for individuals who are at risk exactly immediately after
time Ỹj .

3. A Gamma-process Prior for H(t) =
∫ t

0
h(dy). A useful way to es-

timate properties of the baseline hazard density h(dy) is to assume a param-
eteric model for H(t) =

∫ t

0
h(dy) and then estimate the parameters involved.

A useful parametric probability distribution for the set of increasing func-
tions H(t) for t ≥ 0 is the gamma process Z(t). This is a stochastic process
with independent increments whose increments have the gamma distribution

Z(t)− Z(s) ≈ G
(
θ
(
α(t)− α(s)

)
, λ

)
(3.1)

where α(t) is some strictly-increasing function that is continuously differen-
tiable for t > 0. In (3.1), Z ≈ G(θ, λ) means that Z is a random variable
with the gamma probability density

λθ

Γ(θ)
xθ−1e−λx for 0 ≤ z < ∞

Examples of α(t) in (3.1) would be α(t) = t or α(t) = tσ for some σ > 0.
By (3.1),

E
(
Z(t)− Z(s)

)
=

(
θ
(
α(t)− α(s)

))
/λ = µ

(
α(t)− α(s)

)
and

Var
(
Z(t)− Z(s)

)
=

(
θ
(
α(t)− α(s)

))
/λ2 = µ

(
α(t)− α(s)

)
/λ (3.2)

for µ = θ/λ.
If α(t) = t, E

(
Z(t)

)
= µt in (3.2), so that α(t) = t corresponds to

“noisy exponential” baseline survival times. Similarly, if α(t) = tσ, then
E

(
Z(t)

)
= µtσ, corresponding to “noisy Weibull” survival distributions. The

function α(t) is assumed fixed and θ and λ are parameters to be estimated.
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Given µ = θ/λ, 1/λ determines the variance of H(t) = Z(t) about E
(
H(t)

)
=

µα(t). Often θ or θ and λ are given preassigned values to improve estimation.
The sample paths of the gamma process Z(t) are, with probability one,

strictly-increasing purely-discontinuous functions of t, although the proba-
bility that any preassigned value of t is a jump is zero. This has the modeling
advantage that tied survival-time values can occur with positive probability,
even though the survival times themselves (not conditioned on the path Z(t))
have a continuous distribution, which means that any preassigned survival
time has probability zero of being attained.

For any process Z(t) with independent increments, the differences Zj , Zj0

in (2.5) are independent random variables. By (3.1), the Zj , Zj0 are inde-
pendent random variables with gamma distributions

Zj ≈ G(θW∆
j , λ) where W∆

j = α(Yj −∆j)− α(Yj−1 + ∆j−1)

Zj0 ≈ G(θW∆
j0, λ) where W∆

j0 = α(Yj + ∆j)− α(Yj −∆j) (3.3)

where we write Yj = Ỹj for Ỹj in (1.2) for ease of notation.
If the Zj , Zj0 are considered parameters or “hidden variables” in the

data (Yi, δi, Xi) with the probability distribution (3.3), then the parameters
θ, λ in (3.1) are considered hyperparameters. In a Bayesian framework, the
hyperparameters themselves are given probability (or prior) distributions.
In this case, we assume gamma prior distributions θ, λ ≈ G(ε, ε) for some
small ε > 0 (ε = 0.001 is the most common choice) and an uninformative
normal prior for each component βj of β ∈ Rd, specifically that the prior
distributions of βj are independent normal with means zero and standard
deviation 1/ε (Ibrahim et al. 2001). However, improper uniform priors for λ
and the βj would work just as well in this case.

4. The Full Likelihood L. Under these conditions, the full binned like-
lihood of the data, including the prior distributions for Zj , Zj0 and θ, λ, β,
corresponding to (2.8) is

L∆ =
εε

Γ(ε)
θε−1e−εθ εε

Γ(ε)
λε−1e−ελ

d∏
a=1

1√
2π

exp
(−ε2β2

a/2
)

×
m∏

j=1

(
λθW∆

j

Γ(θW∆
j )

Z
θW∆

j −1

j e−λZj e−ZjRj(β) (4.1)

× λθW∆
j0

Γ(θW∆
j0)

Z
θW∆

j0−1

j0 e−λZj0 e−Zj0R0
j (β)

∏

[Yi=Ỹj ,δi=1]

(
1− exp(−Zj0e

βXi

))
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As each ∆j → 0,

W∆
j → Wj = α(Yj)− α(Yj−1) > 0 and W∆

j0 → 0 (4.2)

for Yj = Ỹj as before. The expressions in the first line of (4.1) vary contin-
uously as W∆

j → Wj > 0. As W∆
j0 → 0, the jth factor in the second line

in (4.1) is asymptotic to C(Zj0)Γ(θW∆
j0)

−1 ∼ C(Zj0)θα′(Ỹj)∆j for Zj0 > 0
and C(Zj0) > 0. There are two cases for the asymptotic behavior of the jth

factor in the second line in (4.1):
If dj = 0, the jth factor has a delta-function singularity at Zj0 = 0 as

∆j → 0 and L∆ does not need to be rescaled. In this case, the factors in (4.1)
with Zj0 disappear in the limit as ∆j → 0 (with Zj0 = 0).

If dj ≥ 1, the function C(Zj0) is a bounded and continuous function
of Zj0 for Zj0 ≥ 0 and the jth factor in (4.1) is asymptotic to C(Zj0)θα′(Yj)∆j

as ∆j → 0.
Thus, ignoring constants that depend on ∆j for dj > 0, the limit of L∆

in (4.1) as maxj ∆j → 0 is the limiting full likelihood

L = C λε−1e−ελ
(
θr+ε−1e−εθ

)
exp

(
−ε2

d∑
a=1

β2
a/2

)

×
m∏

j=1

(
λθWj

Γ(θWj)
Z

θWj−1
j exp

(
−Zj

(
λ + Rj(β)

)))
(4.3)

×
m∏

[dj≥1]

exp
(
−Zj0

(
λ + R0

j (β)
))




∏
[Yi=Ỹj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

Zj0




In (4.3), C depends on ε and α′(Yj) and r is the number of distinct times
Yj = Ỹj with dj ≥ 1. As mentioned earlier, inferences about which parameter
values are relatively more likely are based on finding relatively larger values
of L in (4.3) for the data (Yi, δi, Xi).

5. Estimating Parameters Using the Likelihood L. We estimate the
parameters and hidden variables (θ, λ, Zj , Zj0, β) in (4.3) by using Markov
Chain Monte Carlo methods (Metropolis et al. 1953, Hastings 1970, Gilks et
al. 1996).

Specifically, we define a Markov Chain Qn that takes its values in the
space of possible parameter vectors (θ, λ, Zj , Zj0, β) and which has a sta-
tionary or asymptotic distribution that is proportional to (4.3). This means
that Qn spends most of its time where the likelihood (4.3) is the largest.
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Mean or median values of components or functions of components of Qn can
be used to provide estimates of the parameters affecting the true survival
times Ti.

The Markov chain Qn proceeds by changing or updating each of the
components of the vector (θ, λ, Zj , Zj0, β) in turn in a way that depends on
the conditional probability distribution of that parameter value given the
data and all the other parameters. We carry out these parameter changes or
updates in the following way:

Updating θ : Ignoring multiplicative constants and also ignoring factors in
(4.3) that do not depend on θ, the conditional density of θ given the data
and the other parameters is

θr+ε−1e−εθλθW
m∏

j=1

Z
θWj

j

Γ(θWj)
where W =

m∑

j=1

Wj (5.1)

for Wj in (4.2). The density (5.1) is asymptotic to Cθr+m+ε−1 as θ → 0 and
decays faster than exponentially at infinity, and can be updated efficiently
by one step of a Metropolis random walk (Metropolis et al. 1953).

Alternatively, the density (5.1) is a log-concave function of θ, so that θ
can be updated by a “Gibbs sampler” step that samples directly from the
distribution (5.1) using one of the adaptive-rejection methods of Gilks and
Wild (1992) or Gilks (1992). (See also Gilks et al. 1995.)

In general, a function f(θ) is called log-concave if (d/dθ)2(log f(θ)) < 0
for all θ, or, more generally, if (d/dθ) log f(θ) is decreasing in θ. The log-
concavity of (5.1) follows from the identity

d2

dθ2
log Γ(θ) = Var

(
log G(θ, 1)

)
> 0 (5.2)

where G(θ, 1) represents a gamma-distributed random variable (as in (3.1) ).
(Exercise: Prove (5.2).)

Updating λ : Ignoring multiplicative constants and factors in (4.3) that do
not depend on λ, the conditional density of λ given the data and the other
parameters is

λθW+ε−1 exp
(
−λ

(
ε +

m∑

j=1

(
Zj + Zj0

)))
(5.3)

where Zj0 = 0 if dj = 0. This can be updated by a Gibbs sampler step by
sampling from the gamma distribution

λ ≈ G
(
ε + θW, ε +

m∑

j=1

(
Zj + Zj0

))
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See Fishman (1995) for algorithms for generating gamma-distributed ran-
dom variates. Two other good references for statistical computation and for
scientific computing in general are Devroye (1986) and Press et al. (1992).

Updating Zj : Ignoring multiplicative constants and factors that do not
depend on Zj , the conditional density of Zj given the other parameters is

Z
θWj−1
j e−Zj

(
λ+Rj(β)

)
(5.4)

Thus Zj can be updated by sampling from the gamma distribution

Zj ≈ G
(
θWj , λ + Rj(β)

)

Updating Zj0 for dj ≥ 1 : Ignoring multiplicative constants and factors
that do not depend on Zj0, the conditional density of Zj0 given the other
parameters is

e−Zj0

(
λ+R0

j (β)
) 


∏

[Yi=Ỹj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

Zj0


 (5.5)

The density (5.5) is normalizable in Zj0 and can be updated by a one step of a
Metropolis random walk. Unfortunately, the density (5.5) is not log-concave
in Zj0 due to the factor of Zj0 in the denominator.

Alternatively, a more general sampling technique can be used for (5.5)
that does not require log concavity (Gilks et al. 1995). This method,
called “Metropolis-within-Gibbs” sampling, is equivalent to independence
Metropolis-Hastings sampling (Gilks et al. 1996) using, as the proposal dis-
tribution, an approximation of the density (5.5) based on the method of
Gilks (1992). If the density that is being approximated is log concave, the
method reduces to the adaptive-rejection method of Gilks (1992).

Technically speaking, the term “Metropolis-within-Gibbs” is not quite
corrent, since independence sampling is not Metropolis sampling in the origi-
nal sense. Metropolis et al. (1953) only described proposal distributions that
are one step of a symmetric Markov chain. Independence sampling is con-
tained in a generalization of Metropolis et al. (1953) due to Hastings (1970).
The latter sampling scheme (or schemes) are usually called “Metropolis-
Hastings” sampling.

Independence samplers can have extremely bad convergence properties
if the proposal distribution is less singular or less heavy-tailed than the dis-
tribution being approximated (Gilks et al. 1996). In that case, a Metropolis
random walk can be used instead.
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Large values of βXi can cause numerical underflows and overflows in the
exponential and risk sums in (5.5), but do not cause arbitrarily large values
in the likelihood (5.5). Depending on the compiler, computer programs may
have to be adjusted to avoid program crashes in evaluating exp

(−Zj0e
βXi

)
in (5.5) if βXi is large and positive. The term exp

(−Zj0e
βXi

)
in (5.5) can

be set explicitly to be equal to zero in programming code if Zj0 > 0 and
βXi > 500 and equal to one if βXi < −500. Most modern computers replace
exponential underflows (that is, smaller positive values than the program can
handle) by zero without a program warning or crash. If numerical underflows
in exponentials can also cause program crashes, program adjustments may
also have to be made if Zj0e

βXi by itself is large.

Updating β : Ignoring multiplicative constants and factors that do not
depend on β, the conditional density of βa in (4.3) given the data and other
parameters is

exp
(
−

m∑

j=1

(
ZjRj(β) + Zj0R

0
j (β)− Sj(Zj0, β)

)
− 1

2
ε2β2

a

)
(5.6)

where
Sj(Zj0, β) =

∑

[Yi=Ỹj ,δi=1]

log
(
1− exp

(−Zj0e
βXi

))

is a sum over the observed deaths at times Yi = Ỹj as in (2.9). If there are
no observed deaths at time Yi = Ỹj , then Sj(Zj0, β) = 0 and Zj0 = 0, and
the second two terms in the sums in (5.6) do not appear.

Baring linear dependencies among the sample covariates, the conditional
likelihood in (5.6) is normalizable in each component βj , so that each βj can
be updated efficiently by one step of a Metropolis random walk.

Alternatively, the density (5.6) is log-concave in βa, so that Gibbs sam-
pler updates can be made using the adaptive rejection methods of Gilks
and Wild (1992) or Gilks (1992). Gilks has programming code in C on a
Web site for carrying out Metropolis-within-Gibbs sampling that reduces to
Gilks (1992) if a parameter is set. This C code can be used for non-Metropolis
updates of θ, Zj0, and β.

6. A Likelihood For (θ, λ, β) . The advantage of the Markov Chain Monte
Carlo (MCMC) procedure of the previous section is that it also gives us infor-
mation about the conditional distribution of the baseline cumulative hazards

Zj ≈ H(Yj−)−H(Yj−1) and Zj0 ≈ dH(Yj) = h(dYj)
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given the observed data. If we are primarily interested the parameters (θ, λ, β)
and not in the baseline hazard density h(dy), the Zj , Zj0 can be integrated
out of the likelihood (4.3) to obtain a marginal likelihood that depends only
on (θ, λ, β).

Evaluating the integrals
∫

L(Zj) dZj in (4.3) in succession yields

L = C λε−1e−ελ θr
m∏

j=1

(
λ

λ + Rj(β)

)θWj

× exp

(
−ε2

d∑
a=1

β2
a/2

)
(6.1)

×
m∏

[dj≥1]

exp
(
−Zj0

(
λ + R0

j (β)
))




∏
[Yi=Yj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

Zj0




While λ no longer has a simple gamma update, the parameter θ now has a
gamma update, specifically

θ ≈ G
(
r + 1,

m∑

j=1

Wj log
(
(λ + Rj(β))/λ

))
(6.2)

The parameters Zj0 can be integrated by using the identity
∫ ∞

0

e−at − e−bt

t
dt =

∫ ∞

0

∫ b

a

e−θt dθdt =
∫ b

a

dθ

θ
= log

b

a
(6.3)

for b > a > 0. Thus if dj = 1, the jth factor in the second line of (6.1)
integrates to

log

(
λ + R0

j (β) + eβXi

λ + R0
j (β)

)
= log

(
λ + Rj(β)
λ + R0

j (β)

)

In particular, if dj ≤ 1 for all j, so that there are no ties among observed
death times, then evaluating the integrals

∫
L(Zj0) dZj0 for dj = 1 in (6.1)

leads to the more compact form

L = L(θ, λ, β) = C λε−1e−ελ θr
m∏

j=1

((
λ

λ + Rj(β)

)θWj

log
(

λ + Rj(β)
λ + R0

j (β)

))

(6.4)
ignoring the prior terms in β. If dj = 0, then R0

j (β) = Rj(β) and the
logarithmic factor does not appear. Analogous expressions can be found for
dj ≥ 2 by expanding the last product in (6.1) into a linear combination of
differences of exponentials and applying (6.3).

The likelihood (6.4) no longer has information about the baseline haz-
ards Zj , Zj0, although the conditional density of Zj , Zj0 is given by (5.4)
and (5.5) if β is known precisely. See Kalbfleisch (1978) for a different deriva-
tion if dj ≤ 1 for all j.
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7. The Posterior Distribution of the Hazard Function H(t). (In
Bayesian terminology, “posterior” means “conditional on the observed data
for a given prior”.)

For any j and any partition (Yj−1, Yj) =
⋃Aj

a=1(Yj,a−1, Yja) of (Yj−1, Yj),
define Zj = H(Yj)−H(Yj−1) =

∑Aj

a=1 Zja for Zja = H(Yja−)−H(Yj,a−1).
The same argument as in (2.5) to (4.3) shows that the posterior distribu-
tion (4.3) is still valid with Zja in place of Zj , with of course dja = 0
unless there is an actual observed death at Yja. This implies that the pos-
terior distribution of the random variables Zja is that they are independent
gamma-distributed random variables with distributions

Zja ≈ G
(
θ
(
α(Yja)− α(Yj,a−1)

)
, λ + Rj(β)

)
(7.1)

This in turn implies that, for each j, the posterior distribution of the pro-
cess Z(t) − Z(Yj−1) = H(t) − H(Yj−1) for Yj−1 < t < Yj is that of a
gamma process in (Yj−1, Yj) with scale parameter λj = λ + Rj(β), with
jumps Z(Ỹj+) − Z(Ỹj−) ≈ Zj0 in the posterior distribution of Z(t) at ob-
served death times Ỹj . As before, Zj0 = 0 if dj = 0. If dj > 0, Zj0 has the
density (5.5). (See also Kalbfleisch 1978 and Clayton 1991.)

8. Simulating Data for the Model in Sections 1–3. We can simulate
survival data (Yi, δi, Xi) for the model (2.1)–(2.2)–(3.1) as follows:

First, choose a sample size n, the number of covariates d, and, for i ≤ i ≤
n, covariates Xi ∈ Rd. As in most regression models, these are assumed to be
deterministic and are arbitrary. Choose arbitrary parameters values θ, λ > 0
and risk parameters β ∈ Rd. Also, choose a strictly-increasing continuously-
differentiable function α(t) with α(0) = 0, for example α(t) = t.

The first goal is to define failure times Yi satisfying (2.1)–(2.2)–(3.1),
that is

P (Yi > t) = exp
(−HXi(t)

)
= exp

(−eβXiH(t)
)
, t ≥ 0 (8.1)

where H(t) = Z(t) is a realization of the gamma process

Z(t) ≈ G(
θα(t), λ

) ≈ (1/λ)G(
θα(t), 1

)
(8.2)

The final step will be to modify the construction so that some of the obser-
vations Yi can be censored.

The sample paths of Z(t) are right-continuous with jumps in every time
interval (t1, t2) with 0 ≤ t1 < t2. This implies

P (Yi > t) = P
(
Z(Yi) > Z(t)

)
= exp

(−eβXiZ(t)
)
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so that
P (Z(Yi) > s) = exp

(−eβXis
)

(8.3)

whenever s = Z(t). This suggests that Z(Yi) might have an exponential
distribution with mean e−βXi , but this is not correct. In fact, given Z(t), the
values of Z(Yi) are restricted to the range of Z(t), which is the complement
of an open dense set of real numbers since Z(t) is increasing with jumps in
every open interval. This means that if the random variable Z(Yi) has a
probability distribution with a density g(s), then g(s) = 0 on an open dense
set of real numbers s. Thus Z(Yi) cannot have a probability distribution
with a continuous density.

If the variables Z(Yi) were exponentially distributed, then we could sim-
ulate Yi ≈ Z−1(Zi) where Zi ≈ Z(Yi) had a known distribution. However,
we can do essentially the same even though the Z(Yi) are not exponentially
distributed.

Let Zi be independent exponentially distribution random variables with
mean e−βXi , as incorrectly suggested for Z(Yi) by (8.3). The Zi can be
simulated as

Zi ≈ e−βXi
(− log(Ui)

)

where Ui are independent uniforms for 0 ≤ Ui ≤ 1. Define

Yi = min{ t : Z(t) ≥ Zi } (8.4)

Then Yi ≤ t2 if and only if Z(t2) ≥ Zi, so that

P (Yi > t) = P (Z(t) < Zi) = exp
(−eβXiZ(t)

)
(8.5)

which is exactly (8.1). If follows from (8.3) and (8.5) that P
(
Z(Yi) ≤ s

)
=

P (Zi ≤ s) whenever s is a value attained by Z(t), but Z(Yi) and Zi have
different probability distributions.

To simulate Yi from (8.4), we need an approximate sample path of Z(t).
Define independent gamma-distributed random variables

Qj ≈ G(
θ∆(j,m), 1

)
for 1 ≤ j ≤ mT (8.6)

where ∆(j, m) = α(j/m)−α((j−1)/m) and m and T are large. In particular,
∆(j,m) = 1/m if α(t) = t. In general, by (8.2) and (8.6),

Z(k/m) ≈ G(
θα(k/m), λ

) ≈ (1/λ)G(
θα(k/m), 1

) ≈ (1/λ)
k∑

j=1

Qj
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Thus we can simulate Yi in (8.4) by

Yi = min{ k/m : (1/λ)
k∑

j=1

Qk ≥ Zi } =
1
m

min{ k :
k∑

j=1

Qk ≥ λZi }

or, equivalently, by

Yi =
1
m

min{ k :
k∑

j=1

Qk ≥ Z̃i } where (8.7)

Z̃i ≈ λ exp(−βXi)
(− log(Ui)

) ≈ λZi

To include censoring, we define censoring times

Y c
i =

1
m

min{ k :
k∑

j=1

Qj ≥ Z̃c
i } for Z̃c

i ≈ µe−βXi
(− log(Ui)

)

in the same way for some constant µ > 0. Define δi = 1 (that is, the true
failure time Yi = Ti is observed) if Yi < Y c

i and δi = 0 (that is, Yi < Ti

and Yi is censored) if Y c
i < Yi. The last observed times (observed failure or

censoring times) are

Y o
i = min{Yi, Y c

i } =
1
m

min{ k :
k∑

j=1

Qj ≥ Z̃o
i }, Z̃o

i = min{ Z̃i, Z̃c
i }

(8.8)
In general, if X1 and X2 are independent exponentials with E(X1) = µ1

and E(X2) = µ2, then X3 = min{X1, X2} is exponential with E(X3) =
µ1µ2/(µ1 +µ2) and P (X1 < X2) = µ2/(µ1 +µ2). Morever, X3 and the event
{X1 < X2} are independent. (Exercise: Prove these three statements.)

This implies that the triple (Y o
i , δi, Xi) for Y o

i in (8.8) satisfies the condi-
tions of the model (2.1)–(2.2)–(3.1) with λ replaced by λµ/(λ+µ). Moreover,
the variables δi = I{Z̃i<Z̃c

i
} are independent with P (δi = 0) = P (Z̃c

i < Z̃i) =

λ/(λ + µ), and the δi are independent of Z̃o
i .

This means that if we choose θ, λ and 0 < q < 1 and define

Yi =
1
m

min{ k :
k∑

j=1

Qj > Z̃i } for Z̃i ≈ λ(1− q)e−βXi
(− log(Ui)

)

and then, for each i, independently of the value of Yi, call Yi censored
(δi = 0) with probability q and observed (δi = 1) with probability 1 − q,
then (Yi, δi, Xi) satisfy the conditions of Sections 1–3 with the original value
of λ. (Exercise: Prove this. Note that if µ = ((1−q)/q)λ, then λµ/(λ+µ) =
(1− q)λ and λ/(λ + µ) = q.)
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