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1. Introduction. Suppose that a sample ofindividuals has possible-censored survival times

Vi <Y, <... <Y, (1.1)
Letd; = 1if the i*" timeY; is an observed death add= 0 if it was a right-censored event: That
is, the individual was alive at timE;, but was last seen at that time.7If (1 < i < n) are the true
survival or failure times, thel; = T if §; = 1 andY; < T; if 5; = 0, in which case the true failure
time T; is unknown.

We also assumé-dimensionatovariatevectorsX,, X, ..., X,, for then individuals in (1.1).
The components ak’; might be age, income status, etc. The basic data for (1.1) is the set of triples
(Y;,0;, X;) for 1 <4 < n. The most important statistical questions are connected with estimating
the effect of the covariateX; on the true survival times;.

Let B B B

Yi <Y, < ...<Y, (1.2)

be thedistinct survival times in (1.1). At each tim& = Y, let d; be the number of observed
deaths and; the number of censored events. Ther= >°"" | (d; + a;) is the total sample size
andngps = Z;"’:l d; = Y., 4; is the total number of observed deaths. The number of distinct
observed death timesis= 37", Ij4,~q < m.

The basic statistical model that we describe below is essentially due to Kalbfleisch (1978). See
Clayton (1991) and Ibrahim et al. (2001) for additional discussion and details, and Lee and Wang
(2003) for an introduction to survival analysis. The model described below is nonparametric in flavor,
but still allows tied survival-time data to be handled in a natural way. The likelihood formula that
we derive below for tied data appears to be new. Previous work on this model has mostly assumed
survival times (1.1) that are either without ties or else with grouped survival times (Kalbfleisch 1978,
Ibrahim et al. 2001).

2. A Survival Model. Let Y be the true lifetime of a random individual with covariat€s By
definition, the survival function is

Sx(t) = Px(Y > 1) = exp(—Hx (t)) = exp(— /O hX(dy)) (2.1)

where Hx (t) is a right-continuous increasing function witfix (0) = 0 andh x (dy) is the related
Lebesgue-Stielties measure. The functidg (¢) is one form of theeumulative hazard functioand
hx (dy) the instantaneous hazard measure (or hazard ratePropertional Hazardsassumption is

hx (dy) = "X h(dy) sothat  Hyx(t) = "X H(t) (2.2)

for somed-dimensional vector of parametets where3X in (2.2) is the dot product. One of the
purposes of the model is to estimatdrom the data and to test each componentidd find out
whether that component &f has a statistically significant effect on the survival tifiiesA secondary
goal is to estimate the baseline hazard derig(tly), which would allow us to estimate the expected
survival time distributionSx (¢) for an individual whose covariates aig, even if X is not among
the covariate vectorX; in the data.
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In principle, the likelihood of the dat&;, J;, X;) in (1.1) is

[6:=0] 5i=1]

where Px (Y = Y;) is with respect to some natural measure on the real line. Many inferential
methods in statistics are based on finding the parameters that are the most likely for known data, in
the sense of those parameters that have the largest value of

To derive an explicit formula for (2.3), choose numbexs > 0 such that/ij +A; <

ffjﬂ — Aj44 forall j and define the binned likelihood

. ﬁ{PX,L(Y>S7}+Aj) if 5, = 0 o
A = N N )
—1 (Px, (Y, —A; <Y <Y;+4;) ifé=1

By definition, the true lifetimer; > }7; for censored individuals witly; = Y; so that (2.4) is
the appropriate probability if thé\; > 0 are sufficiently small. The likelihood (2.4) should be
asymptotically proportional to (2.3) in the limit &@s; — 0.

We can write (2.4) in terms of the survival functiéix (¢) in (2.1) as

i1 \ Sx, (Y A ) Sx,(Y; + A,) it 6, = 1
V44, _
exp(* 17j_+A. hxi(dy)> if 5, =0

= f[lexp<— /OYJ_Athi(dy))

1fexp( jy”AJh (dy)) if 6, — 1

Define
YA Y;+A,
Z; :/ h(dy) —and  Zjp= /~ h(dy) (2.5)
Y1448, Y;—A;
Then .
V-, j—1 J j-1
[ = 2 S 7)< Y74 S 0
0 k=1 k=1 k=1
so that

n Yj—4A; n V-4
3 / hx(dy) = 3% / h(dy)
0 0

.
-
.
Il

-

= Zk Z Z eﬁX’ + Z ZkO Z Z eﬁX7
k=1 j=k \ [v,=v]] k=1 I=k+1\ 1y, =7;]
m
= (Z]R] B) + ZjOR]-‘rl(B)) (2.6)



A Bayesian Proportional-Hazards Model . ............. .. . 3
In (2.6), R;(3) is the risk sum

m

RiB) = > | Y ] = Y PN (2.7)

F=i \[vi=Yi] [¥i>Y]

corresponding to the individuals who are at risk immediately before Yimave can then write the
binned likelihood (2.4) as

exp (i(ZjRj(ﬁ) + ZjoRj+1(5))) ﬁ [T ep(=2j0e™)
B gt

X ﬁ 11 (1 - eXp(—ZjOSBXi)>

Jj=

La

—

[Yi=Y;,6:=1]
= exp (— > (2R3 + 2,0 R)(8) + 55(Zyo. 6))) (2.8)
j=1
where
Sj(ZjOa ,6)) = Z log(l — eXp(—ZjQBﬁXi)) (29)
[Yi=Y;,8:=1]

is a sum over the observed deaths at tif¥ies: /Y; and
RY(B) = D P4 YN (2.10)
[Yi=Y;,6i=0] [¥i>Y;)

is the risk sum for individuals who are at risk exactly immediately after ﬁ?}}e

3. A Gamma-process Prior for H(t) = fot h(dy). A useful way to estimate properties of the

baseline hazard densify(dy) is to assume a parameteric model fé(t) = fot h(dy) and then
estimate the parametersinvolved. A useful parametric probability distribution for the set of increasing
functionsH (¢) for ¢t > 0 is the gamma process(t). This is a stochastic process with independent
increments whose increments have the gamma distribution

Z(t)—Z(s) = Q(G(a(t) — a(s)), )\) (3.1)

wherea(t) is some strictly-increasing function that is continuously differentiable fer0. In (3.1),
Z ~ G(6,\) means tha¥ is a random variable with the gamma probability density

—)\0 2/ le ™ for 0<z< o0
() -
Examples ofx(t) in (3.1) would bex(t) = t or a(t) = t for someos > 0. By (3.1),

E(Z(t) - Z(s)) = (e(a(t)—a(s)))/A = pla(t)—a(s)) and
Var(Z(t) — Z(s)) = (o(a(t)_a(s))) /X2 = p(alt) — als)) /A (3.2)
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foru=20/A\.

If a(t) = t, E(Z(t)) = pt in (3.2), so thatx(t) = ¢ corresponds to “noisy exponential”
baseline survival times. Similarly, if(t) = ¢7, thenE(Z(t)) = ut”, corresponding to “noisy
Weibull” survival distributions. The function(t) is assumed fixed arfland\ are parameters to be
estimated. Givem = 6/, 1/ determines the variance &f(t) = Z(t) aboutE (H (t)) = pa(t).
Oftend or # and ) are given preassigned values to improve estimation.

The sample paths of the gamma procégs) are, with probability one, strictly-increasing
purely-discontinuous functions @f although the probability that any preassigned value isfa
jump is zero. This has the modeling advantage that tied survival-time values can occur with positive
probability, even though the survival times themselvest onditioned on the pati(t)) have a
continuous distribution, which means that any preassigned survival time has probability zero of
being attained.

For any proces< (¢) with independent increments, the differendgs Z;, in (2.5) are inde-
pendent random variables. By (3.1), the, Z;, are independent random variables with gamma
distributions

Z; = GOWS?, ) where W2 =a(Y; —Aj) —a(Yj_1+ A1)
Zjo~ GOWSH, N)  where WG =a(Y; +4;) — a(Y; — A;) (3.3)

where we writeY; = Z for if? in (1.2) for ease of notation.

If the Z;, Z;, are considered parameters or “hidden variables” in the @ata;, X;) with the
probability distribution (3.3), then the paramet@érs. in (3.1) are considered hyperparameters. In a
Bayesian framework, the hyperparameters themselves are given probability (or prior) distributions.
In this case, we assume gamma prior distributiéns ~ G (e, ¢) for some smalk > 0 (¢ = 0.001
is the most common choice) and an uninformative normal prior for each compsnefis € R,
specifically that the prior distributions ¢f; are independent normal with means zero and standard
deviationl/e (Ibrahim et al. 2001). However, improper uniform priors foand the3; would work
just as well in this case.

4. The Full Likelihood L. Under these conditions, the full binned likelihood of the data, including
the prior distributions fotZ;, Z;, andd, A, 3, corresponding to (2.8) is

66

I A — 01—595 —1p—cA _¢232/9
AT T T(e H = xp (—¢6,/2)
ﬁ i GWJA*@*AZJ' e~ 21t (F) (4.1)
ewA j :
AW owa s AZjo RO
- ] j ﬁ — —_ . ﬁX”L
% F(TVVJAO) Z]O 0T, oR;(B) H (1 exp( Zjoe )>
[¥i=Y,6,=1]
As eachA; — 0,
W =W, =aYj)—aYjo1) >0 and  WH—0 (4.2)

forY, = ?;as before. The expressions in the firstline of (4.1) vary continuousw]%s—> W; > 0.

As WG — 0, the j* factor in the second line in (4.1) is asymptotic & Z;o)l'(6W5)~" ~
C(Zjo)0a/ ( 7)A; for Z;o > 0andC(Zj) > 0. There are two cases for the asymptotic behavior
of the jth factor in the second line in (4.1):
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If d; = 0, the j*" factor has a delta-function singularity &t = 0 asA; — 0 and L does
not need to be rescaled. In this case, the factors in (4.1) Aghdisappear in the limit as; — 0
(with Z;o = 0).

If d; > 1, the functionC'(Z,o) is a bounded and continuous function®j, for Z;, > 0 and
the j* factor in (4.1) is asymptotic t6'(Z;0)0a’(Y;)A; asA; — 0.

Thus, ignoring constants that depend®pfor d; > 0, the limitof L 5 in (4.1) asnax; A; — 0
is the limiting full likelihood

d
L = CX e (077 e ) exp (8252/2)
a=1

X .ﬁ<p/(\g$;)Zij_1 exp(—Zj()\—f—Rj(ﬁ)))) (43)
x ﬁ eXP(*ZJ—o(/\+R§(5))) (H[Yi—%m—u (1;SXP(—ZJ'065X1'))>
[d; >1] :

In (4.3),C depends om ando’(Y;) andr is the number of distinct timeg; = f with d; > 1. As
mentioned earlier, inferences about which parameter values are relatively more likely are based on
finding relatively larger values df in (4.3) for the datdY;, 6;, X;).

5. Estimating Parameters Using the LikelihoodL. We estimate the parameters and hidden vari-
ables(0, \, Z;, Z;o, 3) in (4.3) by using Markov Chain Monte Carlo methods (Metropolis et al. 1953,
Hastings 1970, Gilks et al. 1996).

Specifically, we define a Markov Chaip, that takes its values in the space of possible parameter
vectors(6, A, Z;, Z o, #) and which has a stationary or asymptotic distribution that is proportional
to (4.3). This means th#&),, spends most of its time where the likelihood (4.3) is the largest. Mean
or median values of components or functions of componends,afan be used to provide estimates
of the parameters affecting the true survival tirfies

The Markov chain@,, proceeds by changing or updating each of the components of the vector
(0,\, Z;, Zjo, 5) in turn in a way that depends on the conditional probability distribution of that
parameter value given the data and all the other parameters. We carry out these parameter changes
or updates in the following way:

Updating @ : Ignoring multiplicative constants and also ignoring factors in (4.3) that do not depend
on 4, the conditional density df given the data and the other parameters is
m oW m
0t ONW ] =2 where W = > W, (5.1)
j=1

L(6W;)

j=1

for W; in (4.2). The density (5.1) is asymptotic €™ ™™ <~! as§ — 0 and decays faster than
exponentially at infinity, and can be updated efficiently by one step of a Metropolis random walk
(Metropolis et al. 1953).

Alternatively, the density (5.1) is alog-concave functiofl,cfo that) can be updated by a “Gibbs
sampler” step that samples directly from the distribution (5.1) using one of the adaptive-rejection
methods of Gilks and Wild (1992) or Gilks (1992). (See also Gilks et al. 1995.)

In general, a functiorf(6) is calledlog-concavef (d/df)?(log f(6)) < 0 for all §, or, more
generally, if(d/d#) log f(0) is decreasing iff. The log-concavity of (5.1) follows from the identity

2
de?
whereG (0, 1) represents a gamma-distributed random variable (as in (3BExgr¢ise Prove (5.2).)

logT'(f) = Var(logG(6,1)) > 0 (5.2)
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Updating A : Ignoring multiplicative constants and factors in (4.3) that do not depend, dine
conditional density of\ given the data and the other parameters is

AT ey (A(e 4 30 (Z + Z) 5.3

whereZ;o = 0if d; = 0. This can be updated by a Gibbs sampler step by sampling from the gamma
distribution

A& g(e+6W, 6+§:(Zj+zj0))

j=1

See Fishman (1995) for algorithms for generating gamma-distributed random variates. Two other
good references for statistical computation and for scientific computing in general are Devroye (1986)
and Press et al. (1992).

Updating Z; : Ignoring multiplicative constants and factors that do not deperid ptine conditional
density ofZ; given the other parameters is

Z]?ijle—zj (>\+RJ(B)> (5.4)

ThusZ; can be updated by sampling from the gamma distribution
Zy ~ G(OW;, A+ Ry(9))

Updating Z ;o for d; > 1: Ignoring multiplicative constants and factors that do not depend;gn
the conditional density af ;, given the other parameters is

" _ _ 7. oBXi
o~ Zio (VHRY(9)) (H[Yi_yj"s"_”(l P (e ))) (5.5)

ZjO

The density (5.5) is normalizable i;, and can be updated by a one step of a Metropolis random
walk. Unfortunately, the density (5.5) is not log-concaveZy due to the factor ofZj, in the
denominator.

Alternatively, a more general sampling technique can be used for (5.5) that does not require log
concavity (Gilks et al. 1995). This method, called “Metropolis-within-Gibbs” sampling, is equivalent
to independence Metropolis-Hastings sampling (Gilks et al. 1996) using, as the proposal distribution,
an approximation of the density (5.5) based on the method of Gilks (1992). If the density that is being
approximated is log concave, the method reduces to the adaptive-rejection method of Gilks (1992).

Technically speaking, the term “Metropolis-within-Gibbs” is not quite corrent, since indepen-
dence sampling is not Metropolis sampling in the original sense. Metropolis et al. (1953) only
described proposal distributions that are one step of a symmetric Markov chain. Independence sam-
pling is contained in a generalization of Metropolis et al. (1953) due to Hastings (1970). The latter
sampling scheme (or schemes) are usually called “Metropolis-Hastings” sampling.

Independence samplers can have extremely bad convergence properties if the proposal distribu-
tion is less singular or less heavy-tailed than the distribution being approximated (Gilks et al. 1996).
In that case, a Metropolis random walk can be used instead.

Large values of3.X; can cause numerical underflows and overflows in the exponential and
risk sums in (5.5), but do not cause arbitrarily large values in the likelihood (5.5). Depending on
the compiler, computer programs may have to be adjusted to avoid program crashes in evaluating
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exp(—Z;oePX7) in (5.5) if X, is large and positive. The teraxp(—Z;oe”*+) in (5.5) can be set
explicitly to be equal to zero in programming codeZif, > 0 and5X; > 500 and equal to one

if 3X; < —500. Most modern computers replace exponential underflows (that is, smaller positive
values than the program can handle) by zero without a program warning or crash. If numerical
underflows in exponentials can also cause program crashes, program adjustments may also have to
be made ifZ;oe ¥ by itself is large.

Updating B : Ignoring multiplicative constants and factors that do not depengl ¢ime conditional
density ofg3, in (4.3) given the data and other parameters is

xp (_ Z(ZjRj(ﬁ) + Zjo R} (8) — S(Zjo, 5)) - ;3@3) (5.6)
j=1
where
Si(Zjo0,B) = Z log(l — exp(iZjoeﬁxi))
[Yi:%,éizl]

is a sum over the observed deaths at tifFigs- Z as in (2.9). If there are no observed deaths at
timeY; = Z thensS;(Z,0,3) = 0 andZ;, = 0, and the second two terms in the sums in (5.6) do
not appeatr.

Baring linear dependencies among the sample covariates, the conditional likelihood in (5.6)
is normalizable in each componesy, so that eaclt; can be updated efficiently by one step of a
Metropolis random walk.

Alternatively, the density (5.6) is log-concave ff), so that Gibbs sampler updates can be
made using the adaptive rejection methods of Gilks and Wild (1992) or Gilks (1992). Gilks has
programming code in C on a Web site for carrying out Metropolis-within-Gibbs sampling that reduces
to Gilks (1992) if a parameter is set. This C code can be used for non-Metropolis updétes af
andg.

6. A Likelihood For (8, A, 8) . The advantage of the Markov Chain Monte Carlo (MCMC) proce-
dure of the previous section is that it also gives us information about the conditional distribution of
the baseline cumulative hazards

Zy ~ HY;-)~H(Y;) and  Zjg ~ dH(Y;) = h(dY))

given the observed data. If we are primarily interested the paraniéters3) and not in the baseline
hazard density(dy), the Z;, Z;, can be integrated out of the likelihood (4.3) to obtain a marginal
likelihood that depends only o, A, ).

Evaluating the integral$ L(Z;) dZ; in (4.3) in succession yields

m Y oW d
L=cCcXx'eo]] <A+R%(ﬂ)> X exp (8253/2) (6.1)

X ﬁ]eXp(_Zjo()\—&—R?(ﬁ))) (H[Yi—Yj,&i—q (1 ijXp(ZjoeﬁXi))>

[d;>1

While A no longer has a simple gamma update, the parariei@v has a gamma update, specifically

0~ G(r+1. 3 Wylog((A+ Ry(5)/3)) (6.2)
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The parameterg;, can be integrated by using the identity

% gat _ o=bt oo rb b a6 b
- dt= *‘“d@dt:/ = =log - 6.3
/o t /0 /ae . 0 % (6.3)

forb > a > 0. Thusifd; = 1, the;'" factor in the second line of (6.1) integrates to

oo (AN XN A R (B)
PR ) T PR

In particular, ifd; < 1for all j, so that there are no ties among observed death times, then evaluating
the integrals L(Z;o) dZ;, for d; = 1 in (6.1) leads to the more compact form

_ _ e—1 _—e Is = )‘ HWJ' >\ +RJ(6)
L= L(@, )\,6) =CA e A 0 H (()\—‘er(ﬂ)) log<>\+R?(ﬁ)>> (6.4)

Jj=1

ignoring the prior terms irf. If d; = 0, thenR}(3) = R;(/) and the logarithmic factor does not
appear. Analogous expressions can be foundfor 2 by expanding the last product in (6.1) into
a linear combination of differences of exponentials and applying (6.3).

The likelihood (6.4) no longer has information about the baseline hazards;, although the
conditional density ofZ;, Z,, is given by (5.4) and (5.5) il is known precisely. See Kalbfleisch
(1978) for a different derivation if; < 1 for all 5.

7. The Posterior Distribution of the Hazard Function H(t). (In Bayesian terminology, “poste-
rior” means “conditional on the observed data for a given prior”.)

For anyj and any partition(Y;_,,Y;) = Ufil(Yg,a,l,Yja) of (Y;_1,Y;), defineZz; =
H(Y,;) — H(Y;1) = Zfii Zj, for Z;, = H(Y;a—) — H(Y;4—1). The same argument as in
(2.5) to (4.3) shows that the posterior distribution (4.3) is still valid Wity in place ofZ;, with
of coursed;, = 0 unless there is an actual observed death;at This implies that the posterior
distribution of the random variables;, is that they are independent gamma-distributed random
variables with distributions

Zia ~ g(a(a(yja) —a(Yja1))s A+ Rj(ﬂ)) (7.1)

This in turn implies that, for eaclj, the posterior distribution of the proceggt) — Z(Y;_1) =
H(t) - H(Y;_1)forY;_; <t <Yjis that of a gamma process(if;_1, Y;) with scale parameter
Aj = A+ R;(6), with jumpsZ(erﬂ—) - Z(f/;-—) ~ Zjo in the posterior distribution of(¢) at
observed death timég. As before,Z;o = 01if d; = 0. If d; > 0, Z;o has the density (5.5). (See
also Kalbfleisch 1978 and Clayton 1991.)

8. Simulating Data for the Model in Sections 1-3.We can simulate survival data’, ¢;, X;) for
the model (2.1)—(2.2)—(3.1) as follows:

First, choose a sample sizg the number of covariate$, and, fori < i < n, covariates
X; € R Asin most regression models, these are assumed to be deterministic and are arbitrary.
Choose arbitrary parameters val#es. > 0 and risk parameters € R?. Also, choose a strictly-
increasing continuously-differentiable functiait) with «(0) = 0, for examplex(t) = ¢.

The first goal is to define failure timé§ satisfying (2.1)—(2.2)—(3.1), that is

P(Y; > t) =exp(—Hx,(t)) = exp (=" H(t)), t>0 (8.1)
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whereH (t) = Z(t) is a realization of the gamma process
Z(t) = G(0a(t),\) ~ (1/A)G(0a(t),1) (8.2)

The final step will be to modify the construction so that some of the observatjara be censored.
The sample paths df(t) are right-continuous with jumps in every time interygy, ¢») with
0 < t; < ty. Thisimplies

P(Y; >t)=P(Z(Y;) > Z(t)) = exp (-’ Z(t))

so that
P(Z(Y;) > s) = exp (—e’¥is) (8.3)

whenevers = Z(¢). This suggests that (Y;) might have an exponential distribution with mean
e~BXi, but this is not correct. In fact, givefi(t), the values ofZ(Y;) are restricted to the range
of Z(t), which is the complement of an open dense set of real numbers Zifi¢as increasing
with jumps in every open interval. This means that if the random varigbl¢) has a probability
distribution with a density(s), theng(s) = 0 on an open dense set of real number3husZ(Y;)
cannot have a probability distribution with a continuous density.

If the variablesZ(Y;) were exponentially distributed, then we could simuldte~ Z~1(Z;)
whereZ; ~ Z(Y;) had a known distribution. However, we can do essentially the same even though
the Z(Y;) are not exponentially distributed.

Let Z; be independent exponentially distribution random variables with raeéf¢, as incor-
rectly suggested faZ (Y;) by (8.3). TheZ; can be simulated as

Z; ~ e PXi (—1log(Uy))
whereU; are independent uniforms for< U; < 1. Define
Y, =min{t: Z(t) > Z; } (8.4)
ThenY; <ty ifand only if Z(¢2) > Z;, so that
P(Y; > t)=P(Z(t) < Z;) = exp ("X Z(t)) (8.5)

which is exactly (8.1). If follows from (8.3) and (8.5) thB{(Z(Y;) < s) = P(Z; < s) whenevels
is a value attained b¥ (¢), but Z(Y;) and Z, have different probability distributions.

To simulateY; from (8.4), we need an approximate sample pat&y @f). Define independent
gamma-distributed random variables

Qi ~G(0A(j,m), 1) for 1<j<mT (8.6)

whereA(j,m) = a(j/m) — a((j — 1)/m) andm andT are large. In particular\(j,m) = 1/m
if a(t) = t. In general, by (8.2) and (8.6),

k
Z(kfm) =~ G(Ba(k/m), N) ~ (1/N)G(0alk/m), 1) ~ (/) Q;
j=1
Thus we can simulat¥; in (8.4) by

k k
Y; = min{k/m:(1/\)> Qr>27Z} = %mm{k:Zkam}
j=1

Jj=1
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or, equivalently, by

k
1 ~
- min{ % : E Qr>Z;} where (8.7)

j=1

Z;i = Nexp(—BX;)(—log(Ui)) ~ AZ;

Joe
Il

To include censoring, we defirensoring times

(2

k
1 ~ ~
Y = — mi :E: > Z° for Z°¢ ~ pe PXi(—1 -
- min{ k Q; > Z{ } or ¢ e ( og(Ul))

J=1

in the same way for some constant> 0. Defined; = 1 (that is, the true failure tim&; = T; is
observed) ifY; < Y;© andd; = 0 (thatis,Y; < T; andY; is censored) it < Y;. The last observed
times (observed failure or censoring times) are

k
1 ~ ~ ~ -
Y2 =min{Y;, Y} = — min{k: g Q;>2y}, Z?=min{Z, Z;} (8.8)
m

j=1

In general, if X; and X, are independent exponentials wWil(X;) = p; and E(X2) = pus,
then X5 = min{X;, Xz} is exponential withE'(Xs) = pypa/(u1 + pe) and P(X; < Xo) =
w2/ (11 + p2). Morever, X5 and the even{ X, < X5} are independent.Eiercise Prove these
three statements.)

Thisimplies that the tripléY;, §;, X;) for Y, in (8.8) satisfies the conditions of the model (2.1)—
(2.2)—(3.1) with\ replaced by\p /(A + 1). Moreover, the variable§ = I{Z<2¢} are independent

with P(6; = 0) = P(Z¢ < Z;) = A/(A + ), and thes; are independent of?.
This means that if we chooge )\ and0 < ¢ < 1 and define

k
1 _ ~
Y, = —min{k: > f Z; ~ M1 -— —BXi( ] U;
- in{ g Q;> 2} or ( q)e ‘(( og( ))

j=1

and then, for each independently of the value &f;, call Y; censoredd; = 0) with probability ¢
andobserved(s; = 1) with probability 1 — ¢, then(Y;, 0;, X;) satisfy the conditions of Sections
1-3 with the original value of\. (Exercise Prove this. Note that if: = ((1 — ¢)/q)A, then
/A +p) = (1 =g)randA/(A+p) = q.)
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