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1. Introduction. Suppose that a sample ofn individuals has possible-censored survival times

Y1 ≤ Y2 ≤ . . . ≤ Yn (1.1)

Let δi = 1 if the ith time Yi is an observed death andδi = 0 if it was a right-censored event: That
is, the individual was alive at timeYi, but was last seen at that time. IfTi (1 ≤ i ≤ n) are the true
survival or failure times, thenYi = Ti if δi = 1 andYi < Ti if δi = 0, in which case the true failure
timeTi is unknown.

We also assumed-dimensionalcovariatevectorsX1, X2, . . . , Xn for then individuals in (1.1).
The components ofXi might be age, income status, etc. The basic data for (1.1) is the set of triples
(Yi, δi, Xi) for 1 ≤ i ≤ n. The most important statistical questions are connected with estimating
the effect of the covariatesXi on the true survival timesTi.

Let
Ỹ1 < Ỹ2 < . . . < Ỹm (1.2)

be thedistinct survival times in (1.1). At each timeY = Ỹj , let dj be the number of observed
deaths andaj the number of censored events. Thenn =

∑m
j=1(dj + aj) is the total sample size

andnobs =
∑m

j=1 dj =
∑n

i=1 δi is the total number of observed deaths. The number of distinct
observed death times isr =

∑m
j=1 I[dj>0] ≤ m.

The basic statistical model that we describe below is essentially due to Kalbfleisch (1978). See
Clayton (1991) and Ibrahim et al. (2001) for additional discussion and details, and Lee and Wang
(2003) for an introduction to survival analysis. The model described below is nonparametric in flavor,
but still allows tied survival-time data to be handled in a natural way. The likelihood formula that
we derive below for tied data appears to be new. Previous work on this model has mostly assumed
survival times (1.1) that are either without ties or else with grouped survival times (Kalbfleisch 1978,
Ibrahim et al. 2001).

2. A Survival Model. Let Y be the true lifetime of a random individual with covariatesX. By
definition, the survival function is

SX(t) = PX(Y > t) = exp
(−HX(t)

)
= exp

(
−

∫ t

0

hX(dy)
)

(2.1)

whereHX(t) is a right-continuous increasing function withHX(0) = 0 andhX(dy) is the related
Lebesgue-Stieltjes measure. The functionHX(t) is one form of thecumulative hazard functionand
hX(dy) the instantaneous hazard measure (or hazard rate). TheProportional Hazardsassumption is

hX(dy) = eβXh(dy) so that HX(t) = eβXH(t) (2.2)

for somed-dimensional vector of parametersβ, whereβX in (2.2) is the dot product. One of the
purposes of the model is to estimateβ from the data and to test each component ofβ to find out
whether that component ofX has a statistically significant effect on the survival timesY . A secondary
goal is to estimate the baseline hazard densityh(dy), which would allow us to estimate the expected
survival time distributionSX(t) for an individual whose covariates areX, even ifX is not among
the covariate vectorsXi in the data.
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In principle, the likelihood of the data(Yi, δi, Xi) in (1.1) is

L =


 ∏

[δi=0]

PXi(Y > Yi)





 ∏

[δi=1]

PXi(Y = Yi)


 (2.3)

wherePX(Y = Yi) is with respect to some natural measure on the real line. Many inferential
methods in statistics are based on finding the parameters that are the most likely for known data, in
the sense of those parameters that have the largest value ofL.

To derive an explicit formula for (2.3), choose numbers∆j > 0 such thatỸj + ∆j <

Ỹj+1 −∆j+1 for all j and define the binned likelihood

L∆ =
n∏

i=1

{
PXi

(Y > Ỹj + ∆j) if δi = 0

PXi(Ỹj −∆j < Y ≤ Ỹj + ∆j) if δi = 1
(2.4)

By definition, the true lifetimeTi > Ỹj for censored individuals withYi = Ỹj , so that (2.4) is
the appropriate probability if the∆j > 0 are sufficiently small. The likelihood (2.4) should be
asymptotically proportional to (2.3) in the limit as∆j → 0.

We can write (2.4) in terms of the survival functionSX(t) in (2.1) as

n∏

i=1

{
SXi(Ỹj + ∆j) if δi = 0

SXi(Ỹj −∆j)− SXi(Ỹj + ∆j) if δi = 1

=
n∏

i=1

exp
(
−

∫ Ỹj−∆j

0

hXi(dy)
)





exp
(
− ∫ Ỹj+∆j

Ỹj−∆j

hXi(dy)
)

if δi = 0

1− exp
(
− ∫ Ỹj+∆j

Ỹj−∆j

hXi(dy)
)

if δi = 1

Define

Zj =
∫ Ỹj−∆j

Yj−1+∆j−1

h(dy) and Zj0 =
∫ Ỹj+∆j

Ỹj−∆j

h(dy) (2.5)

Then ∫ Ỹj−∆j

0

h(dy) = Zj +
j−1∑

k=1

(
Zk + Zk0

)
=

j∑

k=1

Zk +
j−1∑

k=1

Zk0

so that

n∑

i=1

∫ Ỹj−∆j

0

hXi(dy) =
n∑

i=1

eβXi

∫ Ỹj−∆j

0

h(dy)

=
m∑

j=1




∑

[Yi=Ỹj ]

eβXi




(
j∑

k=1

Zk +
j−1∑

k=1

Zk0

)

=
m∑

k=1

Zk

m∑

j=k




∑

[Yi=Ỹj ]

eβXi


 +

m∑

k=1

Zk0

m∑

j=k+1




∑

[Yi=Ỹj ]

eβXi




=
m∑

j=1

(
ZjRj(β) + Zj0Rj+1(β)

)
(2.6)



A Bayesian Proportional-Hazards Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

In (2.6),Rj(β) is the risk sum

Rj(β) =
m∑

k=j




∑

[Yi=Ỹk]

eβXi


 =

∑

[Yi≥Ỹj ]

eβXi (2.7)

corresponding to the individuals who are at risk immediately before timeỸj . We can then write the
binned likelihood (2.4) as

L∆ = exp


−

m∑

j=1

(
ZjRj(β) + Zj0Rj+1(β)

)



m∏

j=1

∏
[

Yi=Ỹj

δi=0

] exp
(−Zj0e

βXi
)

×
m∏

j=1

∏

[Yi=Ỹj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

= exp

(
−

m∑

j=1

(
ZjRj(β) + Zj0R

0
j (β) + Sj(Zj0, β)

))
(2.8)

where

Sj(Zj0, β) =
∑

[Yi=Ỹj ,δi=1]

log
(
1− exp

(−Zj0e
βXi

))
(2.9)

is a sum over the observed deaths at timesYi = Ỹj and

R0
j (β) =

∑

[Yi=Ỹj ,δi=0]

eβXi +
∑

[Yi>Ỹj ]

eβXi (2.10)

is the risk sum for individuals who are at risk exactly immediately after timeỸj .

3. A Gamma-process Prior for H(t) =
∫ t

0 h(dy). A useful way to estimate properties of the

baseline hazard densityh(dy) is to assume a parameteric model forH(t) =
∫ t

0
h(dy) and then

estimate the parameters involved. A useful parametric probability distribution for the set of increasing
functionsH(t) for t ≥ 0 is the gamma processZ(t). This is a stochastic process with independent
increments whose increments have the gamma distribution

Z(t)− Z(s) ≈ G
(
θ
(
α(t)− α(s)

)
, λ

)
(3.1)

whereα(t) is some strictly-increasing function that is continuously differentiable fort > 0. In (3.1),
Z ≈ G(θ, λ) means thatZ is a random variable with the gamma probability density

λθ

Γ(θ)
xθ−1e−λx for 0 ≤ z < ∞

Examples ofα(t) in (3.1) would beα(t) = t or α(t) = tσ for someσ > 0. By (3.1),

E
(
Z(t)− Z(s)

)
=

(
θ
(
α(t)− α(s)

))
/λ = µ

(
α(t)− α(s)

)
and

Var
(
Z(t)− Z(s)

)
=

(
θ
(
α(t)− α(s)

))
/λ2 = µ

(
α(t)− α(s)

)
/λ (3.2)
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for µ = θ/λ.
If α(t) = t, E

(
Z(t)

)
= µt in (3.2), so thatα(t) = t corresponds to “noisy exponential”

baseline survival times. Similarly, ifα(t) = tσ, thenE
(
Z(t)

)
= µtσ, corresponding to “noisy

Weibull” survival distributions. The functionα(t) is assumed fixed andθ andλ are parameters to be
estimated. Givenµ = θ/λ, 1/λ determines the variance ofH(t) = Z(t) aboutE

(
H(t)

)
= µα(t).

Oftenθ or θ andλ are given preassigned values to improve estimation.
The sample paths of the gamma processZ(t) are, with probability one, strictly-increasing

purely-discontinuous functions oft, although the probability that any preassigned value oft is a
jump is zero. This has the modeling advantage that tied survival-time values can occur with positive
probability, even though the survival times themselves (not conditioned on the pathZ(t)) have a
continuous distribution, which means that any preassigned survival time has probability zero of
being attained.

For any processZ(t) with independent increments, the differencesZj , Zj0 in (2.5) are inde-
pendent random variables. By (3.1), theZj , Zj0 are independent random variables with gamma
distributions

Zj ≈ G(θW∆
j , λ) where W∆

j = α(Yj −∆j)− α(Yj−1 + ∆j−1)

Zj0 ≈ G(θW∆
j0, λ) where W∆

j0 = α(Yj + ∆j)− α(Yj −∆j) (3.3)

where we writeYj = Ỹj for Ỹj in (1.2) for ease of notation.
If the Zj , Zj0 are considered parameters or “hidden variables” in the data(Yi, δi, Xi) with the

probability distribution (3.3), then the parametersθ, λ in (3.1) are considered hyperparameters. In a
Bayesian framework, the hyperparameters themselves are given probability (or prior) distributions.
In this case, we assume gamma prior distributionsθ, λ ≈ G(ε, ε) for some smallε > 0 (ε = 0.001
is the most common choice) and an uninformative normal prior for each componentβj of β ∈ Rd,
specifically that the prior distributions ofβj are independent normal with means zero and standard
deviation1/ε (Ibrahim et al. 2001). However, improper uniform priors forλ and theβj would work
just as well in this case.

4. The Full Likelihood L. Under these conditions, the full binned likelihood of the data, including
the prior distributions forZj , Zj0 andθ, λ, β, corresponding to (2.8) is

L∆ =
εε

Γ(ε)
θε−1e−εθ εε

Γ(ε)
λε−1e−ελ

d∏
a=1

1√
2π

exp
(−ε2β2

a/2
)

×
m∏

j=1

(
λθW∆

j

Γ(θW∆
j )

Z
θW∆

j −1

j e−λZj e−ZjRj(β) (4.1)

× λθW∆
j0

Γ(θW∆
j0)

Z
θW∆

j0−1

j0 e−λZj0 e−Zj0R0
j (β)

∏

[Yi=Ỹj ,δi=1]

(
1− exp(−Zj0e

βXi

))

As each∆j → 0,

W∆
j → Wj = α(Yj)− α(Yj−1) > 0 and W∆

j0 → 0 (4.2)

for Yj = Ỹj as before. The expressions in the first line of (4.1) vary continuously asW∆
j → Wj > 0.

As W∆
j0 → 0, the jth factor in the second line in (4.1) is asymptotic toC(Zj0)Γ(θW∆

j0)
−1 ∼

C(Zj0)θα′(Ỹj)∆j for Zj0 > 0 andC(Zj0) > 0. There are two cases for the asymptotic behavior
of thejth factor in the second line in (4.1):
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If dj = 0, thejth factor has a delta-function singularity atZj0 = 0 as∆j → 0 andL∆ does
not need to be rescaled. In this case, the factors in (4.1) withZj0 disappear in the limit as∆j → 0
(with Zj0 = 0).

If dj ≥ 1, the functionC(Zj0) is a bounded and continuous function ofZj0 for Zj0 ≥ 0 and
thejth factor in (4.1) is asymptotic toC(Zj0)θα′(Yj)∆j as∆j → 0.

Thus, ignoring constants that depend on∆j for dj > 0, the limit ofL∆ in (4.1) asmaxj ∆j → 0
is the limiting full likelihood

L = C λε−1e−ελ
(
θr+ε−1e−εθ

)
exp

(
−ε2

d∑
a=1

β2
a/2

)

×
m∏

j=1

(
λθWj

Γ(θWj)
Z

θWj−1
j exp

(
−Zj

(
λ + Rj(β)

)))
(4.3)

×
m∏

[dj≥1]

exp
(
−Zj0

(
λ + R0

j (β)
))




∏
[Yi=Ỹj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

Zj0




In (4.3),C depends onε andα′(Yj) andr is the number of distinct timesYj = Ỹj with dj ≥ 1. As
mentioned earlier, inferences about which parameter values are relatively more likely are based on
finding relatively larger values ofL in (4.3) for the data(Yi, δi, Xi).

5. Estimating Parameters Using the LikelihoodL. We estimate the parameters and hidden vari-
ables(θ, λ, Zj , Zj0, β) in (4.3) by using Markov Chain Monte Carlo methods (Metropolis et al. 1953,
Hastings 1970, Gilks et al. 1996).

Specifically, we define a Markov ChainQn that takes its values in the space of possible parameter
vectors(θ, λ, Zj , Zj0, β) and which has a stationary or asymptotic distribution that is proportional
to (4.3). This means thatQn spends most of its time where the likelihood (4.3) is the largest. Mean
or median values of components or functions of components ofQn can be used to provide estimates
of the parameters affecting the true survival timesTi.

The Markov chainQn proceeds by changing or updating each of the components of the vector
(θ, λ, Zj , Zj0, β) in turn in a way that depends on the conditional probability distribution of that
parameter value given the data and all the other parameters. We carry out these parameter changes
or updates in the following way:

Updating θ : Ignoring multiplicative constants and also ignoring factors in (4.3) that do not depend
onθ, the conditional density ofθ given the data and the other parameters is

θr+ε−1e−εθλθW
m∏

j=1

Z
θWj

j

Γ(θWj)
where W =

m∑

j=1

Wj (5.1)

for Wj in (4.2). The density (5.1) is asymptotic toCθr+m+ε−1 asθ → 0 and decays faster than
exponentially at infinity, and can be updated efficiently by one step of a Metropolis random walk
(Metropolis et al. 1953).

Alternatively, the density (5.1) is a log-concave function ofθ, so thatθ can be updated by a “Gibbs
sampler” step that samples directly from the distribution (5.1) using one of the adaptive-rejection
methods of Gilks and Wild (1992) or Gilks (1992). (See also Gilks et al. 1995.)

In general, a functionf(θ) is calledlog-concaveif (d/dθ)2(log f(θ)) < 0 for all θ, or, more
generally, if(d/dθ) log f(θ) is decreasing inθ. The log-concavity of (5.1) follows from the identity

d2

dθ2
log Γ(θ) = Var

(
log G(θ, 1)

)
> 0 (5.2)

whereG(θ, 1) represents a gamma-distributed random variable (as in (3.1) ). (Exercise: Prove (5.2).)
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Updating λ : Ignoring multiplicative constants and factors in (4.3) that do not depend onλ, the
conditional density ofλ given the data and the other parameters is

λθW+ε−1 exp
(
−λ

(
ε +

m∑

j=1

(
Zj + Zj0

)))
(5.3)

whereZj0 = 0 if dj = 0. This can be updated by a Gibbs sampler step by sampling from the gamma
distribution

λ ≈ G
(
ε + θW, ε +

m∑

j=1

(
Zj + Zj0

))

See Fishman (1995) for algorithms for generating gamma-distributed random variates. Two other
good references for statistical computation and for scientific computing in general are Devroye (1986)
and Press et al. (1992).

UpdatingZj : Ignoring multiplicative constants and factors that do not depend onZj , the conditional
density ofZj given the other parameters is

Z
θWj−1
j e−Zj

(
λ+Rj(β)

)
(5.4)

ThusZj can be updated by sampling from the gamma distribution

Zj ≈ G
(
θWj , λ + Rj(β)

)

Updating Zj0 for dj ≥ 1 : Ignoring multiplicative constants and factors that do not depend onZj0,
the conditional density ofZj0 given the other parameters is

e−Zj0

(
λ+R0

j (β)
) 


∏

[Yi=Ỹj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

Zj0


 (5.5)

The density (5.5) is normalizable inZj0 and can be updated by a one step of a Metropolis random
walk. Unfortunately, the density (5.5) is not log-concave inZj0 due to the factor ofZj0 in the
denominator.

Alternatively, a more general sampling technique can be used for (5.5) that does not require log
concavity (Gilks et al. 1995). This method, called “Metropolis-within-Gibbs” sampling, is equivalent
to independence Metropolis-Hastings sampling (Gilks et al. 1996) using, as the proposal distribution,
an approximation of the density (5.5) based on the method of Gilks (1992). If the density that is being
approximated is log concave, the method reduces to the adaptive-rejection method of Gilks (1992).

Technically speaking, the term “Metropolis-within-Gibbs” is not quite corrent, since indepen-
dence sampling is not Metropolis sampling in the original sense. Metropolis et al. (1953) only
described proposal distributions that are one step of a symmetric Markov chain. Independence sam-
pling is contained in a generalization of Metropolis et al. (1953) due to Hastings (1970). The latter
sampling scheme (or schemes) are usually called “Metropolis-Hastings” sampling.

Independence samplers can have extremely bad convergence properties if the proposal distribu-
tion is less singular or less heavy-tailed than the distribution being approximated (Gilks et al. 1996).
In that case, a Metropolis random walk can be used instead.

Large values ofβXi can cause numerical underflows and overflows in the exponential and
risk sums in (5.5), but do not cause arbitrarily large values in the likelihood (5.5). Depending on
the compiler, computer programs may have to be adjusted to avoid program crashes in evaluating
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exp
(−Zj0e

βXi
)

in (5.5) if βXi is large and positive. The termexp
(−Zj0e

βXi
)

in (5.5) can be set
explicitly to be equal to zero in programming code ifZj0 > 0 andβXi > 500 and equal to one
if βXi < −500. Most modern computers replace exponential underflows (that is, smaller positive
values than the program can handle) by zero without a program warning or crash. If numerical
underflows in exponentials can also cause program crashes, program adjustments may also have to
be made ifZj0e

βXi by itself is large.

Updating β : Ignoring multiplicative constants and factors that do not depend onβ, the conditional
density ofβa in (4.3) given the data and other parameters is

exp
(
−

m∑

j=1

(
ZjRj(β) + Zj0R

0
j (β)− Sj(Zj0, β)

)
− 1

2
ε2β2

a

)
(5.6)

where
Sj(Zj0, β) =

∑

[Yi=Ỹj ,δi=1]

log
(
1− exp

(−Zj0e
βXi

))

is a sum over the observed deaths at timesYi = Ỹj as in (2.9). If there are no observed deaths at
time Yi = Ỹj , thenSj(Zj0, β) = 0 andZj0 = 0, and the second two terms in the sums in (5.6) do
not appear.

Baring linear dependencies among the sample covariates, the conditional likelihood in (5.6)
is normalizable in each componentβj , so that eachβj can be updated efficiently by one step of a
Metropolis random walk.

Alternatively, the density (5.6) is log-concave inβa, so that Gibbs sampler updates can be
made using the adaptive rejection methods of Gilks and Wild (1992) or Gilks (1992). Gilks has
programming code in C on a Web site for carrying out Metropolis-within-Gibbs sampling that reduces
to Gilks (1992) if a parameter is set. This C code can be used for non-Metropolis updates ofθ, Zj0,
andβ.

6. A Likelihood For (θ, λ, β) . The advantage of the Markov Chain Monte Carlo (MCMC) proce-
dure of the previous section is that it also gives us information about the conditional distribution of
the baseline cumulative hazards

Zj ≈ H(Yj−)−H(Yj−1) and Zj0 ≈ dH(Yj) = h(dYj)

given the observed data. If we are primarily interested the parameters(θ, λ, β) and not in the baseline
hazard densityh(dy), theZj , Zj0 can be integrated out of the likelihood (4.3) to obtain a marginal
likelihood that depends only on(θ, λ, β).

Evaluating the integrals
∫

L(Zj) dZj in (4.3) in succession yields

L = C λε−1e−ελ θr
m∏

j=1

(
λ

λ + Rj(β)

)θWj

× exp

(
−ε2

d∑
a=1

β2
a/2

)
(6.1)

×
m∏

[dj≥1]

exp
(
−Zj0

(
λ + R0

j (β)
))




∏
[Yi=Yj ,δi=1]

(
1− exp

(−Zj0e
βXi

))

Zj0




Whileλ no longer has a simple gamma update, the parameterθ now has a gamma update, specifically

θ ≈ G
(
r + 1,

m∑

j=1

Wj log
(
(λ + Rj(β))/λ

))
(6.2)
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The parametersZj0 can be integrated by using the identity

∫ ∞

0

e−at − e−bt

t
dt =

∫ ∞

0

∫ b

a

e−θt dθdt =
∫ b

a

dθ

θ
= log

b

a
(6.3)

for b > a > 0. Thus ifdj = 1, thejth factor in the second line of (6.1) integrates to

log

(
λ + R0

j (β) + eβXi

λ + R0
j (β)

)
= log

(
λ + Rj(β)
λ + R0

j (β)

)

In particular, ifdj ≤ 1 for all j, so that there are no ties among observed death times, then evaluating
the integrals

∫
L(Zj0) dZj0 for dj = 1 in (6.1) leads to the more compact form

L = L(θ, λ, β) = C λε−1e−ελ θr
m∏

j=1

((
λ

λ + Rj(β)

)θWj

log
(

λ + Rj(β)
λ + R0

j (β)

))
(6.4)

ignoring the prior terms inβ. If dj = 0, thenR0
j (β) = Rj(β) and the logarithmic factor does not

appear. Analogous expressions can be found fordj ≥ 2 by expanding the last product in (6.1) into
a linear combination of differences of exponentials and applying (6.3).

The likelihood (6.4) no longer has information about the baseline hazardsZj , Zj0, although the
conditional density ofZj , Zj0 is given by (5.4) and (5.5) ifβ is known precisely. See Kalbfleisch
(1978) for a different derivation ifdj ≤ 1 for all j.

7. The Posterior Distribution of the Hazard Function H(t). (In Bayesian terminology, “poste-
rior” means “conditional on the observed data for a given prior”.)

For any j and any partition(Yj−1, Yj) =
⋃Aj

a=1(Yj,a−1, Yja) of (Yj−1, Yj), defineZj =
H(Yj) − H(Yj−1) =

∑Aj

a=1 Zja for Zja = H(Yja−) − H(Yj,a−1). The same argument as in
(2.5) to (4.3) shows that the posterior distribution (4.3) is still valid withZja in place ofZj , with
of coursedja = 0 unless there is an actual observed death atYja. This implies that the posterior
distribution of the random variablesZja is that they are independent gamma-distributed random
variables with distributions

Zja ≈ G
(
θ
(
α(Yja)− α(Yj,a−1)

)
, λ + Rj(β)

)
(7.1)

This in turn implies that, for eachj, the posterior distribution of the processZ(t) − Z(Yj−1) =
H(t)−H(Yj−1) for Yj−1 < t < Yj is that of a gamma process in(Yj−1, Yj) with scale parameter
λj = λ + Rj(β), with jumpsZ(Ỹj+) − Z(Ỹj−) ≈ Zj0 in the posterior distribution ofZ(t) at
observed death times̃Yj . As before,Zj0 = 0 if dj = 0. If dj > 0, Zj0 has the density (5.5). (See
also Kalbfleisch 1978 and Clayton 1991.)

8. Simulating Data for the Model in Sections 1–3.We can simulate survival data(Yi, δi, Xi) for
the model (2.1)–(2.2)–(3.1) as follows:

First, choose a sample sizen, the number of covariatesd, and, fori ≤ i ≤ n, covariates
Xi ∈ Rd. As in most regression models, these are assumed to be deterministic and are arbitrary.
Choose arbitrary parameters valuesθ, λ > 0 and risk parametersβ ∈ Rd. Also, choose a strictly-
increasing continuously-differentiable functionα(t) with α(0) = 0, for exampleα(t) = t.

The first goal is to define failure timesYi satisfying (2.1)–(2.2)–(3.1), that is

P (Yi > t) = exp
(−HXi(t)

)
= exp

(−eβXiH(t)
)
, t ≥ 0 (8.1)
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whereH(t) = Z(t) is a realization of the gamma process

Z(t) ≈ G(
θα(t), λ

) ≈ (1/λ)G(
θα(t), 1

)
(8.2)

The final step will be to modify the construction so that some of the observationsYi can be censored.
The sample paths ofZ(t) are right-continuous with jumps in every time interval(t1, t2) with

0 ≤ t1 < t2. This implies

P (Yi > t) = P
(
Z(Yi) > Z(t)

)
= exp

(−eβXiZ(t)
)

so that
P (Z(Yi) > s) = exp

(−eβXis
)

(8.3)

whenevers = Z(t). This suggests thatZ(Yi) might have an exponential distribution with mean
e−βXi , but this is not correct. In fact, givenZ(t), the values ofZ(Yi) are restricted to the range
of Z(t), which is the complement of an open dense set of real numbers sinceZ(t) is increasing
with jumps in every open interval. This means that if the random variableZ(Yi) has a probability
distribution with a densityg(s), theng(s) = 0 on an open dense set of real numberss. ThusZ(Yi)
cannot have a probability distribution with a continuous density.

If the variablesZ(Yi) were exponentially distributed, then we could simulateYi ≈ Z−1(Zi)
whereZi ≈ Z(Yi) had a known distribution. However, we can do essentially the same even though
theZ(Yi) are not exponentially distributed.

Let Zi be independent exponentially distribution random variables with meane−βXi , as incor-
rectly suggested forZ(Yi) by (8.3). TheZi can be simulated as

Zi ≈ e−βXi
(− log(Ui)

)

whereUi are independent uniforms for0 ≤ Ui ≤ 1. Define

Yi = min{ t : Z(t) ≥ Zi } (8.4)

ThenYi ≤ t2 if and only if Z(t2) ≥ Zi, so that

P (Yi > t) = P (Z(t) < Zi) = exp
(−eβXiZ(t)

)
(8.5)

which is exactly (8.1). If follows from (8.3) and (8.5) thatP
(
Z(Yi) ≤ s

)
= P (Zi ≤ s) whenevers

is a value attained byZ(t), butZ(Yi) andZi have different probability distributions.
To simulateYi from (8.4), we need an approximate sample path ofZ(t). Define independent

gamma-distributed random variables

Qj ≈ G(
θ∆(j, m), 1

)
for 1 ≤ j ≤ mT (8.6)

where∆(j, m) = α(j/m) − α((j − 1)/m) andm andT are large. In particular,∆(j, m) = 1/m
if α(t) = t. In general, by (8.2) and (8.6),

Z(k/m) ≈ G(
θα(k/m), λ

) ≈ (1/λ)G(
θα(k/m), 1

) ≈ (1/λ)
k∑

j=1

Qj

Thus we can simulateYi in (8.4) by

Yi = min{ k/m : (1/λ)
k∑

j=1

Qk ≥ Zi } =
1
m

min{ k :
k∑

j=1

Qk ≥ λZi }
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or, equivalently, by

Yi =
1
m

min{ k :
k∑

j=1

Qk ≥ Z̃i } where (8.7)

Z̃i ≈ λ exp(−βXi)
(− log(Ui)

) ≈ λZi

To include censoring, we definecensoring times

Y c
i =

1
m

min{ k :
k∑

j=1

Qj ≥ Z̃c
i } for Z̃c

i ≈ µe−βXi
(− log(Ui)

)

in the same way for some constantµ > 0. Defineδi = 1 (that is, the true failure timeYi = Ti is
observed) ifYi < Y c

i andδi = 0 (that is,Yi < Ti andYi is censored) ifY c
i < Yi. The last observed

times (observed failure or censoring times) are

Y o
i = min{Yi, Y c

i } =
1
m

min{ k :
k∑

j=1

Qj ≥ Z̃o
i }, Z̃o

i = min{ Z̃i, Z̃c
i } (8.8)

In general, ifX1 and X2 are independent exponentials withE(X1) = µ1 and E(X2) = µ2,
thenX3 = min{X1, X2} is exponential withE(X3) = µ1µ2/(µ1 + µ2) andP (X1 < X2) =
µ2/(µ1 + µ2). Morever,X3 and the event{X1 < X2} are independent. (Exercise: Prove these
three statements.)

This implies that the triple(Y o
i , δi, Xi) for Y o

i in (8.8) satisfies the conditions of the model (2.1)–
(2.2)–(3.1) withλ replaced byλµ/(λ + µ). Moreover, the variablesδi = I{Z̃i<Z̃c

i
} are independent

with P (δi = 0) = P (Z̃c
i < Z̃i) = λ/(λ + µ), and theδi are independent of̃Zo

i .
This means that if we chooseθ, λ and0 < q < 1 and define

Yi =
1
m

min{ k :
k∑

j=1

Qj > Z̃i } for Z̃i ≈ λ(1− q)e−βXi
(− log(Ui)

)

and then, for eachi, independently of the value ofYi, call Yi censored(δi = 0) with probabilityq
andobserved(δi = 1) with probability 1 − q, then(Yi, δi, Xi) satisfy the conditions of Sections
1–3 with the original value ofλ. (Exercise: Prove this. Note that ifµ = ((1 − q)/q)λ, then
λµ/(λ + µ) = (1− q)λ andλ/(λ + µ) = q.)
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