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1. An Overview

The first three sections give a quick overview of Martin boundary theory and
state the main results. The succeeding sections will flesh out the details, and give
proofs and examples.

Virtually all of the results below are classical. The article Doob (1959) and
the book by Kemeny, Snell, and Knapp (1976) are good sources for additional
details. A recent survey article by Wolfgang Woess (1994) has an immense amount
of information (both modern and classical) about Martin boundaries and random
walks in general. Finally, Doob (1984) is an excellent source for classical Martin
boundary theory for Brownian motion and the Laplacian.

Introduction

Let S be a group or a homogeneous space of a group. Martin boundary theory can
be used to do the following:

(i) Characterize all nonnegative harmonic functions on S, and sometimes also
construct them,

(ii) Characterizes the behavior of random walks Xn on S as n →∞, and

(iii) Define and work with “h-processes” on S, which are processes like Xn but
which can have simpler limiting behavior as n → ∞. These can be used to
give more information about harmonic functions on S and about the Martin
boundary itself.

For simplicity, we assume that S is a countable discrete group or homogeneous
space, in which case the random walks Xn are Markov chains. The same results
below hold generally as well for Lie groups and symmetric spaces with Xn replaced
by the intrinsic “Brownian motion” diffusion processes Xt on S. The main differ-
ences between the discrete and continuous cases are greater technicalities in the
construction of the Martin boundary, some of which is caused by worries about the
regularity of the sample paths of Xt. On the other hand, there are fewer Brownian
motion processes Xt on a particular Lie group G than possible random walks Xn

on a countable group, which makes the continuous case easier in that respect.
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Martin boundary theory can be applied to nearly any transient Markov chain
or continuous-time Markov processes. Most of the conclusions below hold in some
form whether Xn is a random walk or Brownian motion process or not.

For definiteness, assume that S is either a countably infinite group or else is a
countable set that is acted upon transitively by a group G. Assume that we have
an “averaging” or “transition” function p(x, y) ≥ 0 on S × S such that

(i)
∑

y∈S p(x, y) = 1 for all x ∈ S, and p(x, y) ≥ 0 for x, y ∈ S,

(ii) p(x, y) = p(gx, gy) for all x, y ∈ S and g ∈ G.

A function u(x) ≥ 0 on S is called harmonic (or p-harmonic) if

(1.1) u(x) =
∑

y∈S

p(x, y)u(y) for all x ∈ S

The simplest case is when S is a graph and p(x, y) puts equal weight on the nodes
that are one link away from x. In this case, p(x, y) is called the isotropic nearest-
neighbor transition function on S. A function u(x) on S is then harmonic if it is
equal to the average of the values of u(x) on the nearest neighbors of x in the graph.
Two important special cases are when S is

(i) The d-dimensional lattice Zd in Rd or
(ii) The infinite homogeneous tree Tr in which each element x has r ≥ 3 nearest

neighbors.

We will usually assume that p(x, y) is both irreducible and transient . Irre-
ducibility means that the associated random walk Xn can get from any x ∈ S to
any other y ∈ S (with positive probability). Transience means that, with proba-
bility one, the associated random walk Xn eventually wanders off to infinity. (See
below for a more precise definition.) If p(x, y) is irreducible and has any nonconstant
nonnegative harmonic functions, then it is automatically transient.

By Polya’s theorem, isotropic nearest-neighbor random walk on Zd is transient
for d ≥ 3 but not for d = 1 or d = 2. However, nonnegative nearest-neighbor har-
monic functions on Zd are constant for any d. Nearest-neighbor random walks on
the infinite homogeneous tree Tr are transient, and there is a rich class of nonneg-
ative harmonic functions.

If S is a group, the condition p(x, y) = p(gx, gy) for all x, y, g is equivalent to

p(x, y) = p(e, x−1y) = pe(x−1y), all x, y ∈ S

As mentioned above, there are no nonconstant isotropic nearest-neighbor nonnega-
tive harmonic functions on S = Zd, and the corresponding Martin boundary theory
is trivial. The same holds more generally if

∑
y p(e, y)|y| < ∞ and

∑
y p(e, y)y = 0.

If
∑

y p(e, y)y 6= 0 in Zd, there are generally nonconstant nonnegative harmonic
functions for which there is a nice characterization in terms of Martin boundary
theory that we will discuss in Section 7 below (Choquet and Deny, 1960; Doob,
Snell, and Williamson, 1960; Ney and Spitzer, 1966; see also Woess, 1994). There
is also a nice characterization of the Martin boundary and nonnegative isotropic
nearest-neighbor harmonic functions on homogeneous trees that we present in Sec-
tion 8, as well as a large literature for more general p(x, y) on more general trees
(Woess, 1994).

Section 6 below has a simple example in which Martin boundary theory for a
random walk in Z2 is used to solve a special case of the classical Hausdorff moment
problem (Widder, 1946) and is also applied to an urn model.



Martin Boundaries and Random Walks 3

The Martin Boundary

The basic approach is as follows (see Section 4 for the details). Given a transition
function p(x, y) which is transient and irreducible on a set S, we construct the
Martin compactification

ŜM = S ∪ ∂SM of S

(which depends on p(x, y) ) and the Martin boundary ∂SM = ŜM − S. (More
precisely, we construct a compact metric space ŜM with a homeomorphic embedding
π : S → ŜM and define ∂SM = ŜM − π(S).)

As part of the same process, we obtain the Martin kernel K(x, α) ≥ 0 for
x ∈ S and α ∈ ∂SM which has the property that, for any nonnegative p-harmonic
function u(x) on S, there exists a measure µu(dα) ≥ 0 on ∂SM such that

(1.2) u(x) =
∫

∂SM

K(x, α)µu(dα), all x ∈ S

(Here we follow the usual probabilist’s convention of writing µ(dα) instead of dµ(α)
for integrals with respect to a measure µ.)

It follows from the construction of K(x, α) and ŜM that

(i) K(x0, α) = 1, all x ∈ ∂SM , for some x0 ∈ S,

(ii) K(x, α) ≤ Cx independently of α ∈ ∂SM

where x0 ∈ S is an arbitrary preassigned “reference point.” This implies

(iii) µu(∂SM ) = u(x0) < ∞, and

(iv) the integral in (1.2) converges whenever µu(∂SM ) < ∞

The natural question of whether the measure µu in (1.2) is unique, or whether
K(x, α) is harmonic in x for all α, so that (1.2) defines a harmonic function for
any probability measure µu on ∂SM , leads to an additional technicality. The mea-
sures µu(dα) in (1.2) are unique, and do define harmonic functions on S whenever
µu(∂SM ) < ∞, providing that they are restricted to a subset ∂mSM ⊆ ∂SM . In
general, a function u(x) ≥ 0 is called minimal harmonic on S if (i) it is harmonic
and (ii) whenever 0 ≤ w(x) ≤ u(x) for any other harmonic function w(x) on S,
then w(x) = Cu(x) for some constant C ≥ 0. Set

∂mSM = {α ∈ ∂SM : K(x, α) is minimal harmonic in x }

Then ∂mSM is a Borel subset of ∂SM , and, for any p-harmonic u(x) ≥ 0 on S,
there exists a unique measure µu(dα) ≥ 0 with Supp(µu) ⊆ ∂mSM such that

(1.3) u(x) =
∫

∂mSM

K(x, α)µu(dα), x ∈ S

The set ∂mSM ⊆ ∂SM is called the “minimal boundary” of S. In many cases
∂mSM = ∂SM (see the examples below), but ∂mSM ⊂ ∂SM can occur even for
random walks in Z1 (Cartwright and Sawyer, 1991; Woess, 1994). Since K(x, α)
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is harmonic for each α ∈ ∂mSM , the integral (1.3) defines a harmonic function
u(x) ≥ 0 for any measure µu(dα) ≥ 0 with µu(∂mSM ) < ∞.

The representations (1.2)-(1.3) hold for arbitrary nonnegative harmonic func-
tions. Sometimes we have the representation

(1.4) u(x) =
∫

∂P SM

K(x, α)µu(dα), x ∈ S

with a smaller subset ∂P SM ⊂ ∂mSM for bounded nonnegative harmonic functions
u(x). The set ∂P SM in (1.4) is called the Poisson boundary for p(x, y). Typically
∂P SM ⊂ ∂mSM for random walks in Zd (see Section 7), but ∂P SM = ∂mSM = ∂SM

for isotropic nearest-neighbor random walks in the infinite homogeneous tree Tr.
In Section 6 we consider a random walk in Z2 with ∂mSM = ∂SM = [0, 1] (within
homeomorphisms) but ∂P SM = {1/2}.

The uniqueness of the representing measure µu(dα) in (1.3) can be used to
find a general characterization of ∂P SM . If 0 ≤ u(x) ≤ w(x) are two p-harmonic
functions, then w(x) − u(x) ≥ 0 is also p-harmonic, so that µw(dα) = µu(dα) +
µw−u(dα) on ∂mSM by uniqueness. Thus µu(dα) ≤ µw(dα) in (1.3) whenever
0 ≤ u(x) ≤ w(x). This implies that if u(x) is a p-harmonic function with 0 ≤
u(x) ≤ M , then 0 ≤ µu(dα) ≤ Mµ1(dα) where µ1(dα) is the representing measure
of the constant p-harmonic function u(x) ≡ 1. That is, if µ1(dα) is defined by

(1.5)
∫

∂mSM

K(x, α)µ1(dα) = 1, all x ∈ S

then µu(dα) ≤ Mµ1(dα), and u(x) is p-harmonic with 0 ≤ u(x) ≤ M if and only if

(1.6) u(x) =
∫

∂mSM

K(x, α) g(α) µ1(dα)

where 0 ≤ g(α) ≤ M . Thus the Poisson boundary ∂P SM is essentially the support
of the representing measure µ1 in (1.5).

Minimal Harmonic Functions and Choquet Theory

It follows from the uniqueness of the representation (1.3) that any minimal p-
harmonic function u(x) on S is of the form CK(x, α) for some constant C and
α ∈ ∂mSM . That is,

{uα(x) = K(x, α) : α ∈ ∂mSM }
is the entire set of minimal nonnegative p-harmonic functions on S within nonneg-
ative constants.

The formula (1.3) is reminiscent of the Krein-Milman and Choquet theorems.
The Krein-Milman theorem says that a compact convex set K in a linear topological
space T is the closed convex hull of the extreme points of K. The Choquet theorem
goes one step further and says that any x ∈ K can be represented as the integral
of a probability measure on the extreme points. If p(x, y) is irreducible, the set

Kx0 = {u(x) ≥ 0 : u(x) = pu(x) for all x, u(x0) = 1 }
(where pu(x) =

∑
y∈S p(x, y)u(y) ) is a compact convex set under the topology

of pointwise convergence on S. Since S is discrete, this is the same topology as
uniform convergence on compact sets in S. The extreme points of Kx0 are exactly
the minimal harmonic functions, and (1.3) is equivalent to Choquet’s theorem.
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2. Random Walks and Probability Theory
The conditions

(2.1) p(x, y) ≥ 0,
∑

y∈S

p(x, y) = 1 for all x ∈ S

are sufficient to construct a Markov chain on S with transition function p(x, y).
That is, given (2.1), there exists a measure space (W,B) with

(i) probability measures Px on (W,B) depending on a parameter x ∈ S (a prob-
ability measure is a nonnegative measure with total mass Px(W ) = 1) and

(ii) S-valued random variables {Xn(w) : n ≥ 0} for w ∈ W (a random variable
is the same as a measurable function) such that

Px

( {w : X0(w) = x, X1(w) = y1, X2(w) = y2, . . . , Xn(w) = yn }
)

(2.2)

= p(x, y1) p(y1, y2) . . . p(yn−1, yn)

for all n ≥ 0 and x, y1, y2, . . . , yn ∈ S.
The notation “Px” means that the process starts with X0 = x. Note that

Px({w : X0(w) = x}) = Px(X0 = x) = 1 by summing (2.2) over y1, . . . , yn and
applying (2.1). In general, Px of a relation means Px of the set of all w ∈ W for
which the relation is true. For example, Px(X0 = x) = Px

({w : X(w) = x}) = 1.
If Px(E) = 1, the set E is said to happen almost surely (a.s.). That is, a.s. (almost
surely) is the same as a.e. (almost everywhere).

An event in a probability space is the same as a measurable set A ∈ B.
The conditional probability of an event A given another event B is Px(A | B) =
Px(A ∩B)/Px(B), which is defined whenever Px(B) > 0. It follows from (2.2) that

Px(Xn+1 = y | Xn = x, X1 = al, . . . , Xn−1 = an−1) = p(x, y)

for all x, y ∈ S and a1, . . . , an−1 ∈ S. This means that, once the process is at
Xn = x, it forgets where it was before time n. (This is called the Markov property
for the process {Xn}.)

The expected value Ex(X) of a random variable X(w) on (W,B) is the integral∫
W

X(w)Px(dw) =
∫

W
X(w) dPx(w). Thus if u(y) ≥ 0

∑

y∈S

p(x, y)u(y) = Ex

(
u(X1)

)
=

∫

W

u
(
X1(w)

)
Px(dw)

and u(x) ≥ 0 is p-harmonic if and only if u(x) = Ex

(
u(X1)

)
for all x ∈ S.

Random Walks

A Markov chain {Xn } with transition function p(x, y) on a set S is called a random
walk with respect to a group G if G acts transitively on S and p(x, y) = p(gx, gy)
for all x, y ∈ S, g ∈ G. If G = S, this is equivalent to

p(x, y) = p(e, x−1y) = pe(x−1y)
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The S-valued random variables X, Y are independent if Px(X = a, Y = b) =
Px(X = a)Px(Y = b) for all a, b ∈ S. This is equivalent to Px(X = a | Y = b) =
Px(X = a) if Px(Y = b) > 0. If p(x, y) = p(gx, gy) for g ∈ G = S, then Xn is
a Markov chain with transition function p(x, y) if and only if {Xn} have the same
joint probability distributions as

Xn = X0Y1Y2 . . . Yn

where {Yn } are independent S-valued random variables with the same distribution
P (Yk = z) = pe(z) = p(e, z).

Given a transition function p(x, y) on a discrete set S, we can construct a
probability space (W,B) as follows. Let

(2.3) W = S∞ = {w = (a0, a1, . . . , an, . . .) : ai ∈ S }

be the set of all infinite sequences from S. Define Xn(w) = an. For n ≥ 0 and
yi ∈ S, the cylinder set C = Cn;y0,...,yn ⊆ W is the set of all w ∈ W such that
wi = yi for 0 ≤ i ≤ n. The Borel σ-algebra B is the σ-algebra generated by
these cylinder sets. The relation (2.2) defines Px(C) on cylinder sets, and extends
uniquely to a probability measure Px(B) on (W,B) that satisfies (2.2).

For (2.3), the sample paths {Xn(w) : w ∈ W} are exactly the same as the
points w = (a0, a1, . . . , an, . . .) ∈ W . The probability space (W,B) defined above is
called the Kolmogorov representation space for the random variables Xn, and is a
useful tool in measure-theoretic probability theory.

Random Walks and Transience

If we sum (2.2) over y1, y2, . . . , yn−1 ∈ S, we obtain

Px(Xn = y) = pn(x, y), x, y ∈ S

where pn(x, y) is the nth matrix power of p(x, y). That is, p0(x, y) = δxy, p1(x, y) =
p(x, y), and pn(x, y) =

∑
z∈S pn−1(x, z)p(z, y) for n ≥ 1. The Green’s function or

potential function of p(x, y) or Xn is

g(x, y) =
∞∑

n=0

pn(x, y)(2.4)

=
∞∑

n=0

Px(Xn = y) = Ex

( ∞∑
n=0

Iy(Xn)
)
≤ ∞

where IA(z) is the indicator function of the set A and p0(x, y) = Ix(y). Probabilis-
tically, g(x, y) is the expected number of times that the process is ever at y given
that it began at X0 = x.

The process Xn (or the kernel p(x, y)) is called irreducible if, for all x, y ∈ S,
there exists some n ≥ 0 such that Px(Xn = y) = pn(x, y) > 0. By (2.4), this is
equivalent to g(x, y) > 0 for all x, y ∈ S. The process Xn is transient if

(2.5) Px( lim
n→∞

Xn = ∞) = 1, all x ∈ S
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where limn→∞Xn = ∞ means that, for any compact or finite set K ⊆ S, there
exists nK < ∞ such that Xn /∈ K for all n ≥ nK . In other words, Xn eventually
leaves any finite set K and never returns. (This is the same as convergence to the
point ∞ for the one-point compactification Ŝ = S ∪ {∞} of S.)

One can show that Xn is transient if and only if g(x, y) < ∞ for all x, y ∈ S. If
Xn is irreducible, then (2.5) holds for all x ∈ S if it holds for one x ∈ S. Similarly,
if (2.5) fails, then g(x, y) = ∞ for all x, y ∈ S, and also (since Xn is irreducible)

Px(Xn = y for infinitely many n ≥ 0) = 1, all x, y ∈ S

In this case, p(x, y) and Xn are called recurrent .
By a theorem of Polya, isotropic nearest-neighbor random walk in the d-

dimensional lattice Zd is transient for dimensions d ≥ 3, but recurrent if d = 1 or
d = 2. Nearest-neighbor random walk in the infinite homogeneous tree Tr (r ≥ 3)
is always transient.

3. Limits at Infinity
Assume that {Xn} is transient and irreducible in S. Even though the sample paths
Xn(w) do not converge in S as n →∞, they converge a.s. in the Martin compactifi-
cation ŜM . (See Sections 4 and 5 for proofs.) Moreover, the limit X∞(w) ∈ ∂mSM

a.s. That is,

Px( lim
n→∞

Xn exists and is some X∞ ∈ ∂mSM ) = 1, all x ∈ S

We can also characterize the distribution of the exit point X∞. Specifically

(3.1) Px( lim
n→∞

Xn = X∞ ∈ A) =
∫

A

K(x, α) µ1(dα), A ⊆ ∂mSM

where µ1(dα) is the representing measure of u(x) = 1; i.e.

(3.2)
∫

∂mSM

K(x, α) µ1(dα) = 1, x ∈ S

In particular, since K(x0, α) ≡ 1,

Px0( lim
n→∞

Xn = X∞ ∈ dα) = µ1(dα)

and hence µ1(dα) is the exit distribution of {Xn} for X0 = x0.

The Dirichlet Problem and the Doob-Näım-Fatou Theorem

Given a function g(y) on the boundary ∂O of a domain O, the classical Dirichlet
problem is to find a function u(x) that is harmonic in O and satisfies limx→y u(x) =
g(y) for x ∈ O and y ∈ ∂O. If ∂O is smooth, u(x) =

∫
∂O g(y) νx(dy) where νx(dy)

is the exit distribution of Brownian motion in O beginning at x (Doob, 1984). By
(1.6), any bounded harmonic function on S is of the form

u(x) =
∫

∂mSM

K(x, α) g(α) µ1(dα)
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where g(α) is bounded on ∂mSM . The exit distribution (3.1) suggests that we
might have

Px

(
lim

n→∞
u(Xn) = g(X∞)

)
= 1, all x ∈ S

It fact, we can conclude more. By (1.3), an arbitrary nonnegative harmonic u(x) ≥ 0
on S can be written

(3.3) u(x) =
∫

∂mSM

K(x, α) ν(dα), x ∈ S

where ν(dα) ≥ 0 on ∂mSM . One can then show that

(3.4) Px

(
lim

n→∞
u(Xn) = q(X∞)

)
= 1, all x ∈ S

where q(α) = (dν/dµ1)(α) is the absolutely continuous part of the Lebesgue de-
composition of ν(dα) with respect to µ1(dα). That is, if ν(dα) = g(α)µ1(dα) then
q(α) = g(α), and, in general,

ν(dα) = q(α)µ1(dα) + νc(dα)

where νc(dα) and µ1(dα) are mutually singular measures on ∂mSM .
In particular, if ν(dα) in (3.3) is singular with respect to µ1(dα), then

Px

(
lim

n→∞
u(Xn) = 0

)
= 1 for all x ∈ S

The relation (3.4) generalizes a theorem of Fatou about harmonic functions in the
upper half-plane.

Using h-Processes to Change the Limit at Infinity

Let h(x) be an nonnegative p-harmonic function on S with h(x0) = 1. Since

h(x) =
∑

y∈S

p(x, y)h(y) =
∑

y∈S

pn(x, y)h(y), x ∈ S, n ≥ 1

we have h(x) > 0 for all x ∈ S by irreducibility. Set

(3.5) ph(x, y) =
1

h(x)
p(x, y)h(y), x, y ∈ S

Then ph(x, y) ≥ 0 and
∑

y∈S ph(x, y) = 1 for all x, so that (3.5) defines a new
transition function ph(x, y) on S.

We can use ph(x, y) to define new probability measures Ph
x (B) and a new

Markov chain X
(h)
n (w) on the Kolmogorov-representation path space (2.3) as before.

The resulting Markov process X
(h)
n is called the h-process of Xn corresponding

to h(x). Note that the sample space W and the sample paths {X(h)
n (w)} = {Xn(w)}

are identical in the representation (2.2)–(2.3). Only the probability measures Ph
x (B)

and the transition function ph(x, y) have changed.
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The transition functions p(x, y) and ph(x, y) have essentially the same nonneg-
ative harmonic functions. Specifically, by (3.5), if u(x) ≥ 0,

∑

y∈S

ph(x, y)
u(y)
h(y)

=
1

h(x)

∑

y∈S

p(x, y)u(y) =
u(x)
h(x)

if and only if u(x) =
∑

y∈S p(x, y)u(y). Thus

(3.6) u(x) is p-harmonic if and only u(x)/h(x) is ph-harmonic

It also follows from (3.5) that

(ph)2(x, y) =
∑

z∈S

ph(x, z) ph(z, y) =
1

h(x)

∑

z∈S

p(x, z) p(z, y)h(y)

=
1

h(x)
p2(x, y)h(y)

and (ph)n(x, y) = 1
h(x)pn(x, y)g(y) for all n ≥ 0 by induction. Similarly, the poten-

tial function gh(x, y) =
∑∞

n=0(p
h)n(x, y) = 1

h(x)g(x, y)h(y).
The Martin kernel K(x, y) is defined for x, y ∈ S by

K(x, y) =
g(x, y)
g(x0, y)

for x, y ∈ S

where x0 ∈ S is an arbitrary “reference point” (Section 4). Thus K(x0, y) = 1 for
all y. It follows from irreducibility that K(x, y) ≤ Cx for all x, y ∈ S, where Cx is
independent of y (Section 4). The Martin compactification of S is (essentially) the
smallest compactification Ŝ of S for which the functions wx(y) = K(x, y) extend
in y to continuous functions on Ŝ, where “smallest” means with the minimal number
of points.

The Martin kernel for ph(x, y) is

(3.7) Kh(x, y) =
gh(x, y)
gh(x0, y)

=
h(x0)
h(x)

K(x, y) =
1

h(x)
K(x, y)

Since the continuous functions wx(y) = K(x, y) defining the Martin compactifica-
tion are then essentially the same, it follows that p(x, y) and ph(x, y) have exactly
the same Martin boundary (Section 4).

By assumption, h(x) ≥ 0 is p-harmonic with h(x0) = 1, so that

(3.8) h(x) =
∫

∂mSM

K(x, α)µh(dα)

for some µh(dα) ≥ 0 by (1.3). By (3.7) and (3.8)

∫

∂mSM

Kh(x, α)µh(dα) = 1, all x ∈ S
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so that µh(dα) is the representing measure for u(x) = 1 for ph(x, y). Thus

(3.9) Ph
x ( lim

n→∞
Xn = X∞ ∈ A) =

1
h(x)

∫

A

K(x, α) µh(dα)

by (3.1) and (3.7).
For example, the representing measure for the minimal harmonic function

h(x) = hβ(x) = K(x, β) is the Dirac measure µhβ
(dα) = δβ(dα) for β ∈ ∂mSM . It

then follows from (3.9) that

P
hβ
x ( lim

n→∞
Xn = β) = 1, all x ∈ S

Thus, if we want to use probabilistic methods to study the nonnegative har-
monic functions u(x), then we can assume that the corresponding Markov chain
Xn has any of a wide variety of behaviors as n →∞.

It turns out that Phα
x (B) for α ∈ ∂mSM is sufficient to characterize Px(B) for

all events B ∈ B:

Theorem 3.1. Let B be an arbitrary event involving the random walk Xn with
transition function p(x, y), and let hα(x) = K(x, α) be the minimal p-harmonic
functions for α ∈ ∂mSM . Then

(3.10) Px(B) =
∫

∂mSM

Phα
x (B) K(x, α)µ1(dα)

where µ1(dα) is the representing measure for u(x) = 1 in (3.2). More generally,

(3.11) Ph
x (B) =

1
h(x)

∫

∂mSM

Phα
x (B)K(x, α)µh(dα)

for h(x) and µh(dα) in (3.8) with h(x0) = 1.

Proof. It is sufficient to prove (3.10) and (3.11) for cylinder sets

B = {w : X1(w) = y1, X2(w) = y2, . . . Xn(w) = yn }

for n ≥ 0 and y1, y2, . . . , yn ∈ S. The general case follows by extension theorems
for measures. By (2.2) and (3.5),

Ph
x (B) = ph(x, y1)ph(y1, y2) . . . ph(yn−1, yn)

=
1

h(x)
p(x, y1)p(y1, y2) . . . p(yn−1, yn)h(yn)

=
1

h(x)
Ex

(
IBh(Xn)

)

In particular, Phα
x (B) = 1

K(x,α)Ex

(
IBK(Xn, α)

)
. Thus by (3.8)

Ph
x (B) =

1
h(x)

∫

∂mSM

Ex

(
IBK(Xn, α)

)
µh(dα)

=
1

h(x)

∫

∂mSM

Phα
x (B)K(x, α) µh(dα)
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Setting h(x) = 1 implies (3.10).

Note. If p(x, y) is irreducible and defines a random walk on S — i.e., p(gx, gy)
= p(x, y) for all x, y ∈ S and g ∈ G — then ph(x, y) = 1

h(x)p(x, y)h(y) defines a
random walk if and only if h(x) is multiplicative; i.e.

(3.12)
h(gx)
h(x)

=
h(gy)
h(y)

= φ(g) for all x, y ∈ S, g ∈ G

for some function φ(g) on G. If S = G, (3.12) implies h(xy) = h(x)h(y).
If S is an Abelian group, multiplicative harmonic functions are the same as

minimal harmonic functions, but not necessarily if S is not an Abelian group.

4. Construction and Representation
In this section we construct the Martin boundary and prove the basic representation
theorem (1.2) for non-negative p-harmonic functions. As in Sections 1–3, we assume
that S is a discrete, countable set and assume that p(x, y) satisfies:

p(x, y) ≥ 0,
∑

y∈S

p(x, y) = 1 for all x ∈ S

Let pn(x, y) be the nth matrix power of p(x, y) as before, and assume

g(x, y) =
∞∑

n=0

pn(x, y) < ∞, all x, y ∈ S

Irreducibility implies that g(x0, y) > 0 for all x0, y ∈ S. Here we only assume that
g(x0, y) > 0 for all y ∈ S and some fixed x0. This is weaker than irreducibility,
and is equivalent to assuming that you can get to any y ∈ S from some fixed point
x0 ∈ S. This will be important in Section 6. Define

(4.1) K(x, y) =
g(x, y)
g(x0, y)

, x, y ∈ S

Then

Lemma 4.1. If g(x0, y) > 0 for all y ∈ S, then there exist constants Cx, indepen-
dent of y, such that

K(x, y) =
g(x, y)
g(x0, y)

≤ Cx for all x, y ∈ S

Proof. Given x ∈ S, pm(x0, x) > 0 for some m ≥ 0 since g(x0, x) > 0. In general

∑

z∈S

pm(x, z) g(z, y) =
∑

z∈S

∞∑
n=0

pm(x, z)pn(z, y) =
∞∑

n=0

pm+n(x, y)(4.2)

=
∞∑

n=m

pn(x, y) = g(x, y)−
m−1∑
n=0

pn(x, y)
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Thus
g(x0, y) ≥

∑

z∈S

pm(x0, z) g(z, y) ≥ pm(x0, x)g(x, y)

and

K(x, y) =
g(x, y)
g(x0, y)

≤ Cx =
1

pm(x0, x)

The next step in the construction of ŜM is to define a metric ρ(x, y) on S such that
the completion of the metric space (S, ρ) is a compact space Ŝ with the desired
properties. Set

(4.3) ρ(x, y) =
∑

q∈S

D(q)
|K(q, x)−K(q, y)|+ |δqx − δqy|

Cq + 1

where δxy is the Kronecker delta, the constants Cq are the same as in Lemma 4.1,
and D(q) satisfy

∑
q∈S D(q) < ∞. Then the series (4.3) converges uniformly in x

and y. Also, ρ(y, y) = 0, ρ(y, z) > 0 if y 6= z, ρ(y, w) ≤ ρ(y, z) + ρ(z, w) for
y, z, w ∈ S, and ρ(y, z) is a metric on S.

A sequence { yn } ⊆ S is a Cauchy sequence for ρ(y, z) (i.e., limm,n→∞ ρ(yn, ym)
= 0) if and only if EITHER (i) yn ≡ y for all n ≥ n0 for some n0 < ∞ and y ∈ S
(so that { yn } converges in S), OR ELSE (ii) limn→∞ yn = ∞ and the limits
limn→∞K(x, yn) exist for every x ∈ S. (Here limn→∞ yn = ∞ means that yn

eventually leaves every finite set and never returns.)
An arbitrary metric space (S, ρ) can be embedded in a complete metric space

(Ŝ, ρ) by considering equivalence classes of Cauchy sequences. In this case, since the
series (4.3) converges uniformly, any sequence { yn } ⊆ S has a subsequence that is
a Cauchy sequence by diagonalization. This implies that the complete metric space
(Ŝ, ρ) is compact.

Since S is discrete, K(x, y) is a continuous function of y ∈ S for each fixed
x ∈ S. By (4.3),

|K(x, y)−K(x, z)| ≤ Cx + 1
D(x)

ρ(y, z)

Thus, for each x ∈ S, K(x, y) has a unique extension to Ŝ as a continuous function
of y. Since K(x0, y) = 1 for y ∈ S,

K(x0, z) = 1 for all z ∈ Ŝ

The space (Ŝ, ρ) for ρ(y, z) in (4.3) is the Martin compactification ŜM of S, and
∂SM = ŜM − S is the Martin boundary. Note that both depend on the transition
function p(x, y) and perhaps on the reference point x0 ∈ S as well.

The terms δxy, δxz in the definition (4.3) of ρ(y, z) are not required to make
ρ(y, z) a metric. If ρ(y, z) = 0 without these terms in (4.3), then K(x, y) =
K(x, z) for all x ∈ S. Then pxK(x, y) = pxK(x, z) for all x, where pf(x) =∑

y∈S p(x, y)f(y), and δxy/g(x0, y) = δxz/g(x0, z) by (4.2). Thus y = z and ρ(y, z)
is a metric without the terms δxy, δxz in (4.3).

The reason for using these terms is more subtle. Suppose that we had a
sequence { yn } ⊆ S and y0 ∈ S such that

(4.4) lim
n→∞

K(x, yn) = K(x, y0) with yn →∞, y0 ∈ S, all x ∈ S
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Then limn→∞ ρ(yn, y0) = 0 if ρ(y, z) were defined in (4.3) without the terms δxy, δxz,
and what should be a non-convergent Cauchy sequence { yn } ⊆ S converges to
y0 ∈ S. The result is that the set S would not be open in the completion Ŝ, and
the boundary Ŝ − S would not be a closed set in Ŝ. The terms δxy, δxz in (4.3)
prevent this, since then ρ(y0, yn) ≥ D(y0)/(Cy0 + 1) > 0 whenever yn 6= y0.

Thus these terms in (4.3) guarantee that S is an open set in the Martin com-
pactification ŜM , and that the Martin boundary ∂SM = ŜM−S is closed. By (4.2),
K(x, α) = K(x, y0) is not p-harmonic in x in either case, so that α /∈ ∂mSM and the
minimal Martin boundary representation for p-harmonic functions is unaffected.

Whether the terms δxy, δxz (or their equivalent) are included in ρ(y, z) or not
is a matter of taste. One can usually prove that (4.4) does not happen in non-
pathological cases, but it still has to be checked if you want to assert that ∂SM is
closed with the simpler definition of ρ(y, z). Doob’s (1959) original construction of
the Martin boundary did not automatically guarantee that S is open in ŜM . Along
with other authors, we have chosen to define the Martin boundary in such a way
that the boundary ∂SM is always closed even if (4.4) can occur.

Before proving the Martin representation formula (1.2) for p-harmonic func-
tions, we need to introduce p-superharmonic functions.

Superharmonic Functions and the Riesz Representation Theorem

Set pu(x) =
∑

y∈S p(x, y)u(y) for functions u(x) ≥ 0 on S. Thus u(x) ≥ 0 is p-
harmonic if and only if u(x) = pu(x) for all x. Similarly, we say that u(x) ≥ 0 is
p-superharmonic if 0 ≤ pu(x) ≤ u(x); i.e.

(4.5) u(x) ≥ pu(x) =
∑

y∈S

p(x, y)u(y), all x ∈ S

A function u(x) is called a potential on S if we can write

u(x) =
∑

y∈S

g(x, y) k(y) for some function k(x) ≥ 0

Since then pu(x) =
∑

y∈S pxg(x, y)k(y) = u(x) − k(x) ≤ u(x) by (4.2), every
potential is automatically superharmonic. A theorem of Riesz in classical potential
theory says that every superharmonic function can be written uniquely as the sum
of a potential and a harmonic function. The proof is easier in our case, but the
result is no less important.

Lemma 4.2 (Riesz Representation Theorem). Every p-superharmonic func-
tion u(x) ≥ 0 can be written

(4.6) u(x) =
∑

y∈S

g(x, y) k(y) + h(x)

where k(y) ≥ 0 and h(x) is p-harmonic. The representation (4.6) is unique, with
k(x) = u(x)− pu(x) and h(x) = limn→∞ pnu(x).

Proof. Since u(x) ≥ pu(x) ≥ 0, it follows that pnu(x) ≥ pn+1u(x) ≥ 0 for all n
and pnu(x) ↓ in n for all x. Thus h(x) = limn→∞ pnu(x) always exists, and is
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p-harmonic by the same argument. In general

u(x) =
m−1∑
n=0

(
pnu(x)− pn+1u(x)

)
+ pmu(x)

=
m−1∑
n=0

pn(x, y)
(
u(y)− pu(y)

)
+ pmu(x)

Since u(x)− pu(x) ≥ 0, (4.6) follows by letting m →∞. Conversely, if (4.6) holds,
then pu(x) = u(x)− k(x) by (4.2).

Similar arguments prove the following result:

Lemma 4.3. (i) If u(x) ≥ 0 is p-superharmonic, then u(x) is a potential if and
only if limn→∞ pnu(x) = 0 for all x ∈ S.

(ii) If 0 ≤ u(x) ≤ v(x) for all x, where u(x) is p-superharmonic and v(x) is a
potential, then u(x) is also a potential.

(iii) If u(x) ≥ 0, v(x) ≥ 0 are p-superharmonic, then w(x) = u(x) ∧ v(x) =
min{u(x), v(x)} is also p-superharmonic.

(iv) K(x, α) is p-superharmonic in x for each α ∈ ∂SM .

Proofs. (i) This follows directly from Lemma 4.2, since then h(x) = 0.
(ii) Since 0 ≤ pnu(x) ≤ pnv(x), this follows from part (i).
(iii) Thus pw(x) ≤ pu(x) ≤ u(x) and pw(x) ≤ pv(x) ≤ v(x), from which

pw(x) ≤ u(x) ∧ v(x) = w(x) follows.
(iv) Since K(x, y) = g(x, y)/g(x0, y) for x, y ∈ S, K(x, y) is a potential (and

is hence p-superharmonic) as a function of x for each y ∈ S. If yn → α ∈ ∂SM ,
then by Fatou’s Lemma

∑

z∈S

p(x, z) lim
n→∞

K(z, yn) ≤ lim
n→∞

∑

z∈S

p(x, z)K(z, yn) ≤ lim
n→∞

K(x, yn)

and hence K(x, α) is p-superharmonic as a function of x.

Proof of the Martin Representation Theorem (1.2)

Theorem 4.1. Let p(x, y) be a transition function on a discrete countable set S.
Assume (i) g(x, y) < ∞ for all x, y ∈ S and (ii) g(x0, y) > 0 for all y ∈ S for
some x0 ∈ S. Define the Martin kernel K(x, y) and Martin boundary ∂SM as in
(4.3)-(4.4). Then, for any p-harmonic function u(x) ≥ 0, there exists a measure
µ(dα) ≥ 0 on ∂SM such that

(4.7) u(x) =
∫

∂SM

K(x, α)µ(dα), x ∈ S

Proof. We use the classical “method of balayage.” Since S is countable, we can
choose finite sets Sn ↑ S. Define

un(x) = u(x) ∧
{

n
∑

y∈Sn

g(x, y)
}

= u(x) ∧ wn(x), wn(x) =
∑

y∈S

g(x, y)nISn(y)
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Since u(x) is p-harmonic and wn(x) is a potential, each function un(x) is a potential
by Lemma 4.3(iii,ii). Thus

un(x) =
∑

y∈S

g(x, y) kn(y) =
∑

y∈S

g(x, y)
g(x0, y)

g(x0, y)kn(y)(4.8)

=
∫

S

K(x, y)µn(dy), µn({y}) = g(x0, y)kn(y)

where kn(y) ≥ 0. Since K(x0, y) = 1, µn(S) = un(x0) ≤ u(x0). Thus µn(dy)
are a bounded sequence of measures on the compact metric space ŜM , so that a
subsequence limk→∞ µnk

(dy) = µ(dy) converges weakly over continuous functions
on ŜM . Since K(x, y) is continuous in y ∈ ŜM for each fixed x, the right-hand side
of (4.8) for n = nk converges to

∫
ŜM

K(x, y) µ(dy). Since wn(x) ≥ ng(x, x) ≥ n for
x ∈ Sn, the functions wn(x) ↑ ∞ and 0 ≤ un(x) ↑ u(x) for all x. Hence, by (4.8)

u(x) =
∫

ŜM

K(x, y) µ(dy)

=
∑

y∈S

g(x, y)
µ({y})
g(x0, y)

+
∫

∂SM

K(x, α) µ(dα)

Finally, by (4.2),

0 = u(x)− pu(x) =
µ({x})
g(x0, x)

+
∫

∂SM

(
K(x, α)− pxK(x, α)

)
µ(dα)

By Lemma 4.1(iv), this implies both that µ(S) = 0 (so that (4.7) holds) and that
µ(dα) is concentrated on the set of α ∈ ∂SM for which K(x, α) is p-harmonic in x.

Corollary 4.1. Let u(x) ≥ 0 be any p-superharmonic function on S. Then, under

the same assumptions as Theorem 4.1, there exists a measure µ(dα) ≥ 0 on ŜM

such that

u(x) =
∫

ŜM

K(x, α)µ(dα), x ∈ S

Proof. Combine Lemma 4.2 and Theorem 4.1.

5. Limits at the Boundary
Assuming the minimal Martin representation (1.3), the purpose of this section is
to prove

Theorem 5.1. Under the assumptions of Sections 1 and 2

(5.1) Px( lim
n→∞

Xn = X∞ ∈ A) =
∫

A

K(x, α) µ1(dα)

for all Borel subsets A ⊆ ∂mSM , where µ1(dα) is the representing measure for
u(x) = 1: ∫

∂mSM

K(x, α)µ1(dα) = 1, all x ∈ S



16 Stanley A. Sawyer

The proof will be by a series of reductions. The reader should be warned that the
proof of (5.1) is a bit subtle in places.

First, define

τF (w) = min{n ≥ 0 : Xn(w) ∈ F }

for an arbitrary subset F ⊆ S, with τF (w) = ∞ if Xn(w) /∈ F for all n ≥ 0. Then

Lemma 5.1. Let F ⊆ S be a finite set. Then there exists a function kF (x) ≥ 0
with support in F such that

Px(τF < ∞) =
∑

y∈F

g(x, y)kF (y) =
∑

y∈S

g(x, y)IF (y)kF (y)

where IF (x) is the indicator function of the set F .

Proof. Let uF (x) = Px(τF < ∞). By arguing from (2.2)
∑

y∈S

p(x, y)uF (y) = Px(Xk ∈ F for some k ≥ 1)

and for n ≥ 1

(5.2)
∑

y∈S

pn(x, y)uF (y) = Px(Xk ∈ F for some k ≥ n)

In particular

(5.3) uF (x)− puF (x) = kF (x) = Px(X0 ∈ F, Xk /∈ F for k ≥ 1) ≥ 0

Hence uF (x) is superharmonic. Since F is finite, limn→∞ pnuF (x) = 0 by (5.2), and
uF (x) is a potential with k(x) = kF (x) = IF (x)kF (x) by the Riesz Representation
Theorem (Lemma 4.2).

It follows similarly from (5.2)–(5.3) and Lemma 4.2 that

Corollary 5.1. For an arbitrary subset A ⊆ S,

vA(x) = Px(Xn ∈ A for infinitely many n)

is a p-harmonic function of x.

The next step is

Lemma 5.2. For an arbitary subset A ⊆ S, there exists a measure νA(dα) ≥ 0
on ∂SM such that

(5.4) vA(x) = Px(Xn ∈ A for infinitely many n) =
∫

A∩∂SM

K0(x, α) νA(dα)

where K0(x, α) = limn→∞ pnK(x, α) is the harmonic part of the superharmonic
function K(x, α).

Remark. It follows from Corollary 5.1 that vA(x) is harmonic, and hence vA(x) =∫
∂SM

K(x, α)µA(dα) =
∫

∂SM
K0(x, α)µA(dα) by Theorem 4.1 and Lemma 4.3(iv).

The crucial point of Lemma 5.2 is that Supp(νA) ⊆ A.
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Proof. Since Xn is transient, Lemma 5.2 holds with νA = 0 if A is finite. Choose
finite sets Am ↑ A as m →∞. Then by Lemma 5.1

Px(τAm
< ∞) =

∫

Am

K(x, y) νm(dy), m ≥ 1

where Supp(νm) ⊆ Am ⊆ A. Since Px0(τAm
< ∞) = νm(S) ≤ 1, there exists

a weakly convergent subsequence νmk
(dy) → νA(dy) in ŜM . Since the random

variables τAm
↓ τA as m →∞,

(5.5) uA(x) = Px(τA < ∞) =
∫

A

K(x, y) νA(dy)

which generalizes Lemma 5.1 to arbitrary sets A ⊆ S. By (5.2), as n →∞,

pnuA(x) = Px(Xk ∈ A, some k ≥ n) =
∫

A

pnK(x, y) νA(dy)(5.6)

→ Px(Xk ∈ A for infinitely many k) for all x ∈ S

Since K(x, y) is superharmonic in x, pnK(x, y) ↓ K0(x, y) for y ∈ Ŝ, and
(pn)xK(x, y) ↓ 0 for y ∈ S by (4.1) and (4.2). The relation (5.4) then follows
from (5.6).

Lemma 5.3 (Zero-One Law). Suppose that u1(x) = 1 is minimal harmonic (or,
equivalently, that all bounded harmonic functions are constant). Then, for any
subset A ⊆ S,

EITHER Px(Xk ∈ A for infinitely many k) = 0, all x ∈ S,

OR ELSE Px(Xk ∈ A for infinitely many k) = 1, all x ∈ S

Remark. This follows from the Kolmogorov Zero-One Law for the special case
of random walks in Rd. Lemma 5.3 extends Kolmogorov’s proof to any irreducible
transient Markov chain for which all bounded harmonic functions are constant. See
Section 7 for a discussion of random walks on Zd.

Proof. Let u(x) = Px(Xk ∈ A for infinitely many k). Since u(x) is harmonic by
Lemma 5.2, u(x) = c for all x ∈ S for some constant c. We will prove that c2 = c,
from which it follows that either c = 0 or c = 1.

It is sufficient to assume that the underlying probability space (W,B) is the
Kolmogorov Representation space

W = S∞ = {w = (a0, a1, . . . , an, . . .) : ai ∈ S }

with Xn(w) = an (see (2.3) ). The σ-algebra B = B(W ) is generated by the cylinder
sets

(5.7) C = Cn; b0,...,bn = {w = (a0, a1, . . . , am, . . .) : ai = bi for 0 ≤ i ≤ n }

Set E = {w : Xn(w) ∈ A for infinitely many n }. Then, for each x ∈ S and ε > 0,
there exists a finite disjoint union of cylinder sets F = ∪n

i=1Ci such that Px(F∆E) =
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Px(F −E)+Px(E−F ) < ε. In particular, |Px(F )−Px(E)| = |Px(F )− c| < ε. For
any cylinder set C,

Px(C ∩ E) = Px(X0 = b0, . . . , Xn = bn, Xk ∈ A for infinitely many k ≥ n)

= Px(C)Pbn
(E) = Px(C) c

by (2.2). Hence

Px(F ∩ E) =
n∑

i=1

Px(Ci ∩ E) =
n∑

i=1

Px(Ci) c = Px(F ) c ≤ (c + ε)c ≤ c2 + ε

Similarly Px(F ∩ E) = Px(E) − Px(E − F ) > c − ε. Thus c2 ≤ c ≤ c2 + 2ε and
c = c2, which implies that either c = 0 or c = 1.

Proof of Theorem 5.1. By Theorem 3.1, for any Borel set A ⊆ ∂mSM ,
(5.8)

Px( lim
n→∞

Xn = X∞ ∈ A) =
∫

∂mSM

Phα
x ( lim

n→∞
Xn = X∞ ∈ A)K(x, α) µ1(dα)

where hα(x) = K(x, α). If we can prove

(5.9) Phα
x ( lim

n→∞
Xn = α) = 1 for all x ∈ S and α ∈ ∂mSM

then the right-hand side of (5.8) will reduce to
∫

A∩∂mSM
K(x, α)µ1(dα), which is

Theorem 5.1.
Fix α ∈ ∂mSM in (5.9) and set Aε = {x ∈ S : ρ(x, α) ≥ ε }. In particular,

α /∈ Aε. If we can show

(5.10) u(x) = Phα
x (Xn ∈ Aε for infinitely many n) = 0

for all x ∈ S and ε > 0, then (5.9) will follow and hence Theorem 5.1.
Note that u(x) is phα-harmonic by Corollary 5.1. In general, by (3.6), a func-

tion w(x) is phα -harmonic if and only if w(x)K(x, α) is p-harmonic. Since K(x, α) is
minimal p-harmonic, all bounded phα-harmonic functions w(x) are constant. Thus,
by Lemma 5.3, either u(x) = 0 in (5.10) for all x ∈ S or u(x) = 1 for all x ∈ S, and
we only have to exclude the case u(x) ≡ 1.

By Lemma 5.2 and (3.7), and the relation ph
n(x, y) = 1

h(x)pn(x, y)h(y),

(5.11) u(x) =
∫

Aε∩∂SM

Khα
0 (x, β) νε(dβ) =

∫

Aε∩∂SM

K0(x, β)
K(x, α)

νε(dβ)

for some measure νε(dβ) ≥ 0. Since u(x) ≤ 1,
∫

A
K0(x, β) νε(dβ) ≤ K(x, α) for all

A ⊆ Aε ∩ ∂SM . Since K(x, α) is minimal harmonic,
∫

A

K0(x, β) νε(dβ) = CA K(x, α) =
∫

A

K0(x0, β) νε(dβ) K(x, α)

for arbitrary A ⊆ Aε ∩ ∂SM , where we evaluated the constant CA by setting x = x0.
Thus

(5.12) K0(x, β) = K0(x0, β)K(x, α) for νε(dβ) a.e. β ∈ Aε ∩ ∂SM
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If (5.10) is false, then u(x0) =
∫

Aε∩∂SM
K0(x0, β) νε(dβ) = 1 by (5.11) and

Lemma 5.3. Since νε(Aε) = Px0(τAε
< ∞) ≤ 1 by (5.5), and since K0(x0, β) ≤

K(x0, β) = 1, it follows from (5.11) that K0(x0, β) = 1 for νε(dβ)-almost every
β ∈ Aε ∩ ∂SM . Thus K0(x, β) = K(x, α) by (5.12) for νε(dβ)-a.e. β ∈ Aε ∩ ∂SM

and all x ∈ S.
By Lemma 4.2, K(x, β) = K0(x, β) + gβ(x) where gβ(x) =

∑
y∈S g(x, y)kβ(y)

for kβ(y) ≥ 0. If K(x0, β) = K0(x0, β) = 1, then gβ(x0) = 0 and thus gβ(x) = 0
for all x ∈ S. Thus K0(x, β) = K(x, β) = K(x, α) for all x ∈ S and νε(dβ)-a.e.
β ∈ Aε ∩ ∂SM .

It follows from the construction of the Martin boundary in Section 4 that if
K(x, α) = K(x, β) for all x ∈ S for α, β ∈ ∂SM , then α = β. Since α /∈ Aε, it
follows that νε(Aε ∩ ∂SM ) = 0. Thus u(x) = 0 in (5.11) and (5.10) for all ε > 0,
which completes the proof of (5.1) and hence of Theorem 5.1.

6. Competition Games and an Urn Model
Let {Zn } be the random walk in Z2 with transition function

(6.1) p[ (x, y), (x + 1, y) ] = p[ (x, y), (x, y + 1) ] =
1
2

That is, given Zn = z ∈ Z2, the process either goes up by one step or else goes
to the right by one step, with probability 1/2 in both cases. Although this is one
of the simplest random walks in Z2, it has an interesting Martin boundary theory.
The Martin representation theorem of Section 4 will provide a solution for a special
case of the classical Hausdorff moment problem. An h-process of (6.1) will lead to
a nontrivial asymptotic result for an urn model (specifically, a strong law of large
numbers with a random limit).

Markov processes of the form (6.1) can be called competition games, since if
Zn = (Xn, Yn)

(6.2) |Zn| = Xn + Yn = X0 + Y0 + n

and one can ask how the n changes between times 0 and n are distributed between
Xn −X0 and Yn − Y0.

While the process {Zn } is not irreducible, we do have that g(z0, w) > 0 for
z0 = (0, 0) and w = (x, y) for x ≥ 0, y ≥ 0. That is, if

S = Q(0,0) = { (x, y) ∈ Z2 : x ≥ 0, y ≥ 0 }

then g(z0, w) > 0 for all w ∈ S. This is sufficient for the results of Section 4.
By (6.1), the infinite series g(z, w) =

∑∞
n=0 pn(z, w) has at most one positive

term. If m ≥ x and n ≥ y,

g[ (x, y), (m, n) ] = pm+n−x−y[ (x, y), (m,n) ]

=
(

m− x + n− y

m− x

)(
1
2

)m+n−x−y

g[ (0, 0), (m, n) ] = pm+n[ (x, y), (m,n) ] =
(

m + n

m

)(
1
2

)m+n
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with g[ (x, y), (m,n) ] = 0 if m < x or n < y. Hence

K[ (x, y), (m,n) ] =
g[ (x, y), (m,n) ]
g[ (0, 0), (m,n) ]

=

(
m−x+n−y

m−x

) (
1
2

)m+n−x−y

(
m+n

m

) (
1
2

)m+n

= 2x+y m(m− 1) . . . (m− x + 1) n(n− 1) . . . (n− y + 1)
(m + n)(m + n− 1) . . . (m + n− x− y + 1)

= 2x+y

(
m

m + n

)x (
n

m + n

)y (
1 + O

(x2

m

)
+ O

(y2

n

))

Thus

Theorem 6.1. Assume (mk, nk) →∞ (i.e., max{mk, nk} → ∞). Then

(6.3) lim
k→∞

K[ (x, y), (mk, nk) ] exists, all (x, y) ∈ S

if and only if

lim
k→∞

mk

mk + nk
= α exists for some α, 0 ≤ α ≤ 1

In that case, the limit in (6.3) equals

(6.4) K[ (x, y), α ] = 2x+y αx(1− α)y

with the convention 00 = 1 and 0x = 0 for x > 0.

Corollary 6.1. A function h(x, y) ≥ 0 is p-harmonic on S — that is,

h(x, y) =
h(x + 1, y) + h(x, y + 1)

2
, all (x, y) ∈ S(6.5)

if and only if there exists a measure µ(dα) ≥ 0 on I = [0, 1] such that

h(x, y) = 2x+y

∫ 1

0

αx(1− α)y µ(dα), all (x, y) ∈ S(6.6)

It turns out that the Corollary is essentially equivalent to a special case of the
classical Hausdorff moment problem (Widder, 1946); see below.

The functions h(x, y) = K[ (x, y), α ] in (6.4) are all harmonic; i.e., satisfy (6.5).
Moreover

Lemma 6.1. The function K[ (x, y), α ] is minimal harmonic for 0 ≤ α ≤ 1. That
is, if

(6.7) h(x, y) =
∫ 1

0

K[ (x, y), s ] µ(ds) ≤ CK[ (x, y), α ] all (x, y) ∈ S

then h(x, y) = cK[ (x, y), α ] for some constant c ≤ C.

Proof. If 0 < α < 1 in (6.7), then by (6.4) and (6.7)
∫ 1

0

( s

α

)x
(

1− s

1− α

)y

µ(ds) ≤ C, all x ≥ 0, y ≥ 0

Fixing y and letting x →∞ implies Supp(µ) ⊆ [0, α]. Fixing x and letting y →∞
implies 1− s ≤ 1− α on Supp(µ), or Supp(µ) ⊆ [α, 1]. Thus Supp(µ) = {α } and
h(x, y) = cK[ (x, y), α ] for c = µ({α}).

If α = 0, then K[ (x, y), α ] = 0 if x > 0, which implies Supp(µ) = { 0 }
by (6.7). Similarly, K[ (x, y), 1 ] = 0 if y > 0, which implies Supp(µ) = { 1 }.
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Corollary 6.2. If h(x, y) is harmonic and bounded for p(z, w) in (6.1), then h(x, y)
is constant.

Proof. Note K[ (x, y), 1/2 ] = 1 for all (x, y) ∈ S, and apply Lemma 6.1.
Thus ∂mSM = ∂SM = [0, 1] but ∂P SM = { 1/2 }. That is, the Poisson boundary

is the single point 1/2.

The h-processes of p[ (x, y), (m, n) ], and an urn model

In general, by (3.5),

ph[ (x, y), (m,n) ] =
1

h(x, y)
p[ (x, y), (m,n) ] h(m,n)

and

ph[ (x, y), (x + 1, y) ] =
1

h(x, y)
1
2

h(x + 1, y)(6.8)

ph[ (x, y), (x, y + 1) ] =
1

h(x, y)
1
2

h(x, y + 1)

Thus if hα(x, y) = K[ (x, y), α ] in (6.4)

phα [ (x, y), (x + 1, y) ] = α

phα [ (x, y), (x, y + 1) ] = 1− α

and by the strong law of large numbers

Phα
x

(
lim

n→∞
Xn

Xn + Yn
= α

)
= 1 for all (x, y) ∈ S, 0 ≤ α ≤ 1

This is equivalent to Phα
x

(
(Xn, Yn) → α

)
= 1 by Theorem 6.1, which implies

Theorem 5.1 in this case by the argument in Section 5.
The harmonic function h(x, y) corresponding to µh(dα) = dα in (6.6) is

h(x, y) =
∫ 1

0

2x+yαx(1− α)y dα = 2x+y x! y!
(x + y + 1)!

and so by (6.8)

ph[ (x, y), (x + 1, y) ] =
x + 1

x + y + 2

ph[ (x, y), (x, y + 1) ] =
y + 1

x + y + 2
This corresponds to the following urn model. Suppose that (x, y) ∈ S means that
there are x+1 red balls and y+1 green balls in an urn. Draw out a ball at random,
and place it back in the urn along with another ball of the same color. Thus the
probability of adding another red ball depends on the proportion of red balls in the
urn at that time. While this proportion varies randomly, we have by Theorem 5.1
and Theorem 6.1

Ph
(x,y)

(
lim

n→∞
Xn

Xn + Yn
= Z∞ ∈ dα

)
=

1
h(x, y)

K[ (x, y), α ] dα

=
(x + y + 1)!

x! y!
αx(1− α)y dα
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which is a beta distribution in α with parameters x+1 and y +1. Since Xn +Yn =
n + C by (6.2), limn→∞Xn/n exists with probability one. The limit, however, is
not constant, but is a beta-distributed random variable whose parameters depend
on X0.

The Hausdorff moment problem

Let µ0, µ1, µ2, . . . be a sequence of nonnegative numbers. A special case of the
Hausdorff moment problem is to find conditions on µn such that

(6.9) µn =
∫ 1

0

tn µ(dt), n ≥ 0

for some measure µ(dt) ≥ 0 on [0, 1]. Define ∆cn = cn − cn+1 (n ≥ 0) for arbitrary
sequences {cn}. The classical result is that {µn} is of the form (6.9) if and only if
∆aµb ≥ 0 for all integers a, b ≥ 0 (Widder, 1946). If (6.9) holds, then by induction

∆aµn =
∫ 1

0

tn(1− t)a µ(dt) ≥ 0

which proves the result one way.
For the other way, note that ∆a+1µn = ∆aµn − ∆aµn+1, so that ∆aµn =

∆a+1µn + ∆aµn+1. This implies that

(6.10) h(x, y) = 2x+y∆xµy

is p-harmonic on S in the sense of (6.5). Thus, if ∆xµy ≥ 0 for all x, y, then h(x, y)
in (6.10) is a nonnegative harmonic function in S, and the representation (6.9)
follows from (6.6) and (6.10).

7. Harmonic Functions on an Abelian Group
Nonnegative harmonic functions of random walks on an Abelian group such as the
integer lattice Zd can be characterized in a nice way. Suppose that p(x, y) is an
irreducible transition function for a random walk on an (additive) Abelian group S.
That is, for all x, y, a ∈ S,

(7.1) p(x, y) = p(x + a, y + a) = p(0, y − x) = p(y − x)

where p(y) = p(0, y). If u(x) ≥ 0 is p-harmonic on S,

u(x) =
∑

y∈S

p(x, y)u(y) =
∑

y∈S

p(0, y − x) u(y) =
∑

y∈S

u(y) p(y − x)

=
∑

y∈S

u(x + y) p(y) =
∑

y∈S

u(x + y) pn(y)(7.2)

where pn(y) = pn(0, y) is the nth matrix power of p(x, y). Thus, if S is Abelian,
then any harmonic u(x) on S can be expressed as a convex combination of translates
of itself. These translates are also harmonic, since if u(x) is p-harmonic

∑

y∈S

p(x, y)u(y + b) =
∑

y∈S

p(y − x)u(y + b) =
∑

y∈S

p(y − b− x)u(y) = u(x + b)

From this it follows
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Theorem 7.1 (Choquet and Deny, 1960; Doob, Snell, and Williamson,
1960). If p(x, y) satisfies (7.1), then u(x) ≥ 0 is minimal p-harmonic on Zd with
u(0) = 1 if and only if

u(x) = eα·x for some α ∈ Rd with
∑

y∈S

eα·yp(y) = 1

Corollary 7.1. Set

(7.3) Γp = {α ∈ Rd :
∑

y∈S

eα·yp(y) = 1 }

Then u(x) ≥ 0 is p-harmonic if and only if

(7.4) u(x) =
∫

Γp

eα·x µu(dα) for some measure µu(dα) ≥ 0

Proof of Theorem 7.1. If u(x) = eα·x and α ∈ Γp, then

∑

y∈S

u(x + y)p(y) = u(x)
∑

y∈S

u(y)p(y) = u(x)

and u(x) is harmonic. If p(x, y) is recurrent, then all nonnegative harmonic func-
tions are constant, and Theorem 7.1 is immediate. Hence it is sufficient to assume
that p(x, y) is transient, so that we can apply the results of Sections 1–5.

Assume that u(x) is minimal p-harmonic with u(0) = 1. For any y ∈ S, there
exists n ≥ 0 such that pn(y) > 0 by irreducibility, and 0 ≤ u(x + y) ≤ cyu(x)
by (7.2) with cy = 1/pn(y). Thus u(x + y) = dyu(x) for all x ∈ S by minimality.
Setting x = 0 implies dy = u(y) and

u(x + y) = u(x)u(y) for all x, y ∈ S

Thus minimal nonnegative harmonic functions on an Abelian group are multiplica-
tive in this sense.

By considering u(x) for x ∈ Zd at basis elements in Zd, we conclude that any
multiplicative u(x) must be of the form u(x) = eα·x for α = (α1, α2, . . . , αn) ∈ Rd.
Since u(x) = eα·x is p-harmonic if and only if α ∈ Γp, the representation (7.4) holds
for any p-harmonic u(x) ≥ 0 on Zd.

Conversely, assume u(x) = eβ·x for some β ∈ Γp, and assume 0 ≤ h(x) ≤ Cu(x)
for some p-harmonic h(x). Then by (7.4)

0 ≤
∫

Γp

eα·x µh(dα) ≤ Ceβ·x for some µh(dα) ≥ 0

Set x = (x1, x2, . . . , xd) for xi ∈ Z1. Fixing xj for j 6= i for each i and letting
xi → ±∞ then implies Supp(µh) ⊆ {β} and hence h(x) = cu(x). Thus u(x) is
minimal, which completes the proof of Theorem 7.1.

Theorem 7.1 has a number of interesting consequences for irreducible random
walks on Zd:
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Corollary 7.2. (i) Mean-zero irreducible random walks on Zd have no nontrivial
nonnegative harmonic functions. That is, if

∑

y∈S

p(y)|y| < ∞ and
∑

y∈S

p(y)y = 0 ∈ Zd

then Γp = {0} and all harmonic u(x) ≥ 0 are constant.

(ii) u(x) = 1 is always minimal harmonic. That is, the Poisson boundary
∂P SM is always {0} while the minimal Martin boundary ∂mSM = Γp in (7.3).

(iii) Suppose

∑

y∈S

p(y)|y|n < ∞, all n ≥ 0, but
∑

y∈S

p(y)eα·y = ∞ for all α 6= 0

Then, p(x, y) has no nontrivial nonnegative harmonic functions on Zd.

Proof. (i) Let φ(y) = eα·y for any α ∈ Rd. Then by Jensen’s inequality

(7.5) 1 = φ

(∑

y∈S

p(y)y
)
≤

∑

y∈S

φ(y)p(y)

with strict inequality in (7.5) unless φ(y) is constant on the support of { p(y) }.
Thus by irreducibility

∑
y∈S eα·yp(y) > 1 for α 6= 0, and Γp = {0}.

(ii) Since 0 ∈ Γp.
(iii) Since then Γp = {0}.

See Ney and Spitzer (1966), Spitzer (1976), and Woess (1994) for more information
about irreducible random walks in Zd.

8. Harmonic Functions on a Homogeneous Tree
Let Tr be an infinite homogeneous tree with r ≥ 3 edges at each node.

∗ eb
bb∗a1

∗
a1a2QQ

´́
E
E
EE
∗ a1a3

QQ ¤¤

"
""∗a2

∗
a2a3´́

QQ
¦
¦
¦¦

a2a1 ∗CC´́

∗a3
"

""∗
a3a1hh

££

b
bb∗

a3a2((
BB

Neighborhood of e for r = 3

The tree Tr can be represented as the
group G generated by r free involutions
{a1, a2, . . . , ar}. That is, a2

1 = a2
2 =

· · · = a2
r = e where e is the identity, but

the ai satisfy no other relations. Each
x ∈ G can then be written in a unique
way in the form

(8.1) x = ai1ai2 . . . aid

where ij 6= ij+1 (1 ≤ j ≤ d−1) for some
d ≥ 0. The group G can be viewed as
the set of all formal strings (8.1), where
x−1 = aid

aid−1 . . . ai1 and the identity e
is the empty string.

Let |x| = d = d(x) be the length of the reduced word x in (8.1). Then |e| = 0
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and |xy| ≤ |x| |y| for x, y ∈ G. The tree Tr is the Cayley graph of the group G
determined by the generators {a1, . . . , ad}, which, by definition, is the graph whose
nodes are the group elements x ∈ G and whose edges are the pairs (x, xai) for
x ∈ G and generators ai. The graph distance d(x, y) is the number of edges in the
shortest path between vertices x, y ∈ Tr. Thus d(e, x) = |x| = d for x in (8.1), and
d(x, y) = |x−1y| for x, y ∈ G. At each x ∈ Tr (other than x = e) exactly one edge
goes back towards e (i.e., |xai| < |x|, where ai is the last letter in x,) and r − 1
edges have |xai| > |x|.

Isotropic random walk on Tr

Nearest-neighbor isotropic random walk on Tr has the transition function

(8.2) p(x, xai) =
1
r
, 1 ≤ i ≤ r

Thus u(x) is p-harmonic on Tr if and only if u(x) is the average of the values of u
on the nearest neighbors of x:

u(x) =
1
r

r∑

i=1

u(xai), x ∈ Tr

Let Xn(w) be the random walk on Tr generated by (8.2) as in Section 2. By (8.2),
the graph distance Yn = d(Xn, e) = |Xn| (which is the same as the length of the
reduced word Xn ∈ Tr) is a Markov chain on {0, 1, 2, . . .} with transition function

qd,d+1 = P (Yn = d + 1 | Yn−1 = d) =
r − 1

r
(d ≥ 1)

qd,d−1 = P (Yn = d− 1 | Yn−1 = d) =
1
r

(d ≥ 1)(8.3)

q0,1 = P (Yn = 1 | Yn−1 = 0) = 1

The process Yn acts like a random walk on Z1 as long as Yn 6= e. From this, it can
be shown that

Px

(
lim

n→∞
Yn

n
= lim

n→∞
d(Xn, e)

n
=

r − 2
r

> 0
)

= 1, all x ∈ Tr

(Sawyer, 1978; Sawyer and Steger, 1987). Thus Px(limn→∞ d(Xn, e) = ∞) = 1 and
Xn is transient for r ≥ 3.

Define
τy(w) = min{n ≥ 0 : Xn(w) = y }, y ∈ Tr

with τy(w) = ∞ if Xn(w) 6= y for 0 ≤ n < ∞. By Lemma 5.1 (or by arguing directly
from (2.2) ), Px(τy < ∞) = g(x, y)k(y) where k(y) = Py(Xn 6= y for all n ≥ 1).
Since {Xn} is transient, k(y) = k > 0. Thus

g(x, y) = Px(τy < ∞) /k, all x, y ∈ Tr

The Martin kernel K(x, y) with reference point x0 = e is then

(8.4) K(x, y) =
g(x, y)
g(e, y)

=
Px(τy < ∞)
Pe(τy < ∞)

=
Py−1x(τe < ∞)
Py−1(τe < ∞)

=
φ(|y−1x|)
φ(|y−1|)

where

(8.5) φ(d) = P (Yn = 0 for some n ≥ 0 | Y0 = d)

is the probability that Yn = d(Xn, e) ever attains the value 0 before being swept
out to +∞. The relations (8.3) imply that the probability (8.5) is the same as that
for the classical Gambler’s Ruin problem, whose solution we now derive.
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Lemma 8.1. The probabilities φ(d) in (8.5) satisfy φ(0) = 1 and

(8.6) φ(d) =
1
r
φ(d− 1) +

r − 1
r

φ(d + 1) for d ≥ 1

Proof. If d ≥ 1, then φ(d) =
∑

y qd,yφ(y) for qd,y in (8.3) by arguing as in the
proof of Lemma 5.1. This implies Lemma 8.1.

Equation (8.6) is an example of what is called a constant-coefficient linear
difference equation. It can be shown that a function ψ(d) for d ≥ 0 is a solution
of (8.6) if and only if ψ(d) is of the form

(8.7) ψ(d) = C1 λd
1 + C2 λd

2, constants C1, C2

where λ1, λ2 are the two roots (assumed distinct) of the quadratic equation

(8.8) λ =
1
r

+
r − 1

r
λ2

This follows from the facts that (i) any function ψ(d) in (8.7) is also a solution
of (8.6), (ii) by induction, any solution of (8.6) is uniquely determined by φ(0)
and φ(1), and (iii) constants C1, C2 can be chosen in (8.7) to match arbitrary
initial values φ(0), φ(1) in (8.6).

The quadratic equation (8.8) can be factored

(r − 1)λ2 − rλ + 1 =
(
(r − 1)λ− 1

)
(λ− 1) = 0

and the two roots are λ1 = 1 and λ2 = 1/(r − 1). Since limd→∞ φ(d) = 0 by (8.5),
and obviously φ(0) = 1, it follows from (8.7) that

φ(d) = P (Yn = 0, some n ≥ 0 | Y0 = d) =
(

1
r − 1

)d

, d ≥ 0

Since Yn = d(Xn, e),

Px(τe < ∞) =
(

1
r − 1

)|x|

It then follows from (8.4) that

(8.9) K(x, y) =
(

1
q

)|x−1y|−|y|
, q = r − 1, x, y ∈ Tr

The limiting behavior of K(x, y) as y →∞ can be inferred from

Lemma 8.2. For any sequence { yn } ⊆ Tr,

lim
n→∞

|x−1yn| − |yn| exists for all x ∈ Tr

if and only if limn→∞ dn = limn→∞ |yn| = ∞ and, writing yn = ain
1

ain
2

. . . ain
dn

for

1 ≤ inj ≤ r (inj+1 6= inj ),

(8.10) lim
n→∞

ink = ik exists for 0 ≤ k < ∞
Proof. Let

(8.11)
φi1,i2,...,id

= lim
n→∞

|(ai1ai2 . . . aid
)−1yn| − |yn|,

φ̃d = min
1≤ij≤r,1≤j≤d

φi1,i2,...,id

Then φ̃d = −d by a diagonalization argument. The values ik in Lemma 8.2 are the
values that minimize φi1,i2,...,id

in (8.11).
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The Ends of a Tree

The space of ends of the tree Tr is the set Ω of formal infinite reduced words

(8.12) ω = ai1ai2 . . . aid
. . . (ij+1 6= ij)

Since ik 6= ik+1 in (8.10) by construction, the sequences {ik} arising in (8.10) can
be identified with the formal infinite reduced words ω ∈ Ω. We have now shown
the first part of

Theorem 8.1. (i) The Martin boundary ∂SM for isotropic nearest-neighbor ran-
dom walk on Tr is the space of ends Ω of Tr, which is a compact metric space under
the topology of convergence of each of the components ai in (8.12). If a sequence
yn ∈ Tr converges in the sense of (8.10) to a point ω ∈ Ω, then

lim
n→∞

K(x, yn) = K(x, ω) = q−L(x,ω)

where if x = ak1ak2 . . . akm and ω = ai1ai2 . . . ain . . . in (8.12)

(8.13)
L(x, ω) = |x| − 2j(x, ω) for

j(x, ω) = max{ j : kc = ic for 1 ≤ c ≤ j }

(ii) A function u(x) ≥ 0 is p-harmonic on Tr if and only if

(8.14) u(x) =
∫

Ω

q−L(x,ω) µu(dω), some µu(dω) ≥ 0

Proof. Part (i) follows from (8.9) and the proof of Lemma 8.2, and part (ii) follows
from Theorem 4.1.

Remarks. It follows from (8.13) and (8.14) that each K(x, ω) is minimal harmonic
on Tr for ω ∈ Ω, so that ∂mSM = ∂SM = Ω. It can also be shown that, in contrast
with the Abelian case, ∂P SM = ∂mSM = Ω.
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