Ma 309 - Matrix Algebra
 Practice Exam

Prof. Sawyer - Washington Univ. - May 2, 2007
Calculators cannot be used. You can use both sides of a one-page crib sheet. Take 1 hour and 15 minutes (7 problems).

1. Find the dimension of the span of the following four vectors in R^{4} :

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{llll}
1 & 3 & 4 & 0
\end{array}\right] \\
& v_{2}=\left[\begin{array}{llll}
0 & 5 & 2 & 0
\end{array}\right] \\
& v_{3}=\left[\begin{array}{llll}
-1 & 7 & 0 & 0
\end{array}\right] \\
& v_{r}=\left[\begin{array}{llll}
2 & 1 & 1 & 5
\end{array}\right]
\end{aligned}
$$

2. Find a basis for the null space of the matrix

$$
\left[\begin{array}{llll}
1 & 5 & 3 & 4 \\
0 & 1 & 3 & 1 \\
1 & 4 & 0 & 3
\end{array}\right]
$$

3. Can the 2×2 identity matrix I_{2} be written as a linear combination of the matrices $\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$? Prove or disprove.
4. Find the set of all vectors x in R^{3} such that

$$
\left[\begin{array}{lll}
5 & 4 & 7 \\
1 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

Is the set of solutions a vector subspace of R^{3} ? (True or false.)
5. Find a basis for the orthogonal complement in R^{5} of the two vectors

$$
\begin{aligned}
& v_{1}=\left[\begin{array}{lllll}
1 & 5 & 4 & 5 & 3
\end{array}\right] \quad \text { and } \\
& v_{2}=\left[\begin{array}{lllll}
1 & 3 & 0 & 3 & 1
\end{array}\right]
\end{aligned}
$$

6. Find the orthogonal projection of $v=\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]$ onto the line through the vector $u=\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]$. Show that the projection must be of the form $c u$ for some constant c and that, indeed, $v-c u$ and $c u$ are orthogonal.
7. Find the characteristic polynomial and the eigenvalues of the matrix

$$
\left[\begin{array}{rrr}
2 & -2 & 3 \\
0 & 3 & -2 \\
0 & -1 & 2
\end{array}\right]
$$

