Ma 309 — Matrix Algebra Practice Exam

Prof. Sawyer — Washington Univ. — May 2, 2007

Calculators cannot be used. You can use both sides of a one-page crib sheet. Take 1 hour and 15 minutes (7 problems).

1. Find the dimension of the span of the following four vectors in \mathbb{R}^4 :

$$v_{1} = \begin{bmatrix} 1 & 3 & 4 & 0 \end{bmatrix}$$

$$v_{2} = \begin{bmatrix} 0 & 5 & 2 & 0 \end{bmatrix}$$

$$v_{3} = \begin{bmatrix} -1 & 7 & 0 & 0 \end{bmatrix}$$

$$v_{r} = \begin{bmatrix} 2 & 1 & 1 & 5 \end{bmatrix}$$

2. Find a basis for the null space of the matrix

$$\begin{bmatrix} 1 & 5 & 3 & 4 \\ 0 & 1 & 3 & 1 \\ 1 & 4 & 0 & 3 \end{bmatrix}$$

3. Can the 2 × 2 identity matrix I_2 be written as a linear combination of the matrices $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$? Prove or disprove.

4. Find the set of all vectors x in \mathbb{R}^3 such that

$\overline{5}$	4	7]	$\begin{bmatrix} x_1 \end{bmatrix}$		$\left\lceil 4 \right\rceil$
1	2	1	x_2	=	2
2	1	3	$\lfloor x_3 \rfloor$		1

Is the set of solutions a vector subspace of \mathbb{R}^3 ? (True or false.)

5. Find a basis for the orthogonal complement in \mathbb{R}^5 of the two vectors

$$v_1 = \begin{bmatrix} 1 & 5 & 4 & 5 & 3 \end{bmatrix}$$
 and
 $v_2 = \begin{bmatrix} 1 & 3 & 0 & 3 & 1 \end{bmatrix}$

6. Find the orthogonal projection of $v = \begin{bmatrix} 2 & 1 & 0 \end{bmatrix}$ onto the line through the vector $u = \begin{bmatrix} 0 & 2 & 1 \end{bmatrix}$. Show that the projection must be of the form cu for some constant c and that, indeed, v - cu and cu are orthogonal.

7. Find the characteristic polynomial and the eigenvalues of the matrix

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & 3 & -2 \\ 0 & -1 & 2 \end{bmatrix}$$