Ma 309 - Matrix Algebra
 Solutions for Practice Test

Prof. Sawyer - Washington Univ. - May 7, 2007

1. Let A be the 4×4 matrix whose rows are $v_{1}, v_{2}, v_{3}, v_{4}$. The span of $v_{1}, v_{2}, v_{3}, v_{4}$ is preserved by elementary row operations on A, and the dimension of the span is the same as the row rank of A. Since

$$
\begin{aligned}
A= & {\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
0 & 5 & 2 & 0 \\
-1 & 7 & 0 & 0 \\
2 & 1 & 1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
0 & 5 & 2 & 0 \\
0 & 10 & 4 & 0 \\
0 & -5 & -7 & 5
\end{array}\right] } \\
& \rightarrow\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
0 & 5 & 2 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -5 & 5
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 3 & 4 & 0 \\
0 & 1 & 2 / 5 & 0 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

the row rank and hence the dimension of $\operatorname{span}\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ is $\operatorname{rank}(A)=3$. Since the row and column ranks of a matrix are the same, it would also be correct to use row operations on the matrix A^{T} with $v_{1}, v_{2}, v_{3}, v_{4}$ as columns.
2. The set of equations

$$
\left[\begin{array}{llll}
1 & 5 & 3 & 4 \tag{*}\\
0 & 1 & 3 & 1 \\
1 & 4 & 0 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is preserved by elementary row operations on the matrix. The matrix in $\left(^{*}\right)$ is row equivalent to

$$
\left[\begin{array}{rrrr}
1 & 5 & 3 & 4 \\
0 & 1 & 3 & 1 \\
0 & -1 & -3 & -1
\end{array}\right] \rightarrow\left[\begin{array}{rccr}
1 & 0 & -12 & -1 \\
0 & 1 & 3 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Thus equation $\left({ }^{*}\right)$ is equivalent to the system

$$
\begin{align*}
x_{1}-12 x_{3}-x_{4} & =0 \\
x_{2}+3 x_{3}+x_{4} & =0
\end{aligned} \quad \text { or } \quad l \begin{aligned}
& x_{1}=12 x_{3}+x_{4} \\
& x_{2}=-3 x_{3}-x_{4} \tag{**}
\end{align*}
$$

Ma 309 Solutions for Practice Test — May 7, 2007
If we add the two equations $x_{3}=x_{3}$ and $x_{4}=x_{4}$, the system (${ }^{* *}$) is equivalent to

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{c}
12 \\
-3 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
1 \\
-1 \\
0 \\
1
\end{array}\right]
$$

This means that these two vectors span the set of solutions of $\left({ }^{*}\right)$. Since these two vectors are linearly independent, they are a basis of the solutions of $(*)$.
3. The question is whether there exist constants c, d so that

$$
I_{2}=\left[\begin{array}{ll}
1 & 0 \tag{*}\\
0 & 1
\end{array}\right]=c\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]+d\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Looking just at the diagonal terms in $\left(^{*}\right.$), this implies $1=2 c$ for the first diagonal term and $1=c$ for the second diagonal term. Since c cannot be simultaneously $1 / 2$ and 1 , the relation (*) cannot hold. Thus I_{2} CANNOT be written as a linear combination of those two matrices.
4. The set of equations

$$
\left[\begin{array}{lll}
5 & 4 & 7 \\
1 & 2 & 1 \\
2 & 1 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
1
\end{array}\right]
$$

can be written in row equivalent form as

$$
\begin{aligned}
& {\left[\begin{array}{lll|l}
5 & 4 & 7 & 4 \\
1 & 2 & 1 & 2 \\
2 & 1 & 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
0 & -6 & 2 & -6 \\
1 & 2 & 1 & 2 \\
0 & -3 & 1 & -3
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccc|r}
0 & 0 & 0 & 0 \\
1 & 2 & 1 & 2 \\
0 & 1 & -1 / 3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|l}
0 & 0 & 0 & 0 \\
1 & 0 & 5 / 3 & 0 \\
0 & 1 & -1 / 3 & 1
\end{array}\right]
\end{aligned}
$$

This is equivalent to the system

$$
\begin{array}{lll}
x_{1}+(5 / 3) x_{3}=0 \tag{**}\\
x_{2}-(1 / 3) x_{3}=1
\end{array} \quad \text { or } \quad \begin{aligned}
& x_{1}=-(5 / 3) x_{3} \\
& x_{2}=(1 / 3) x_{3}+1
\end{aligned}
$$

If we add the equation $x_{3}=x_{3}$, this is equivalent to

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{c}
-5 / 3 \\
1 / 3 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=c\left[\begin{array}{c}
-5 \\
1 \\
3
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

for $c=x_{3} / 3$.
Since the set of solutions DOES NOT include the zero vector $\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{T}$, it is NOT a vector subspace of R^{3}.

Ma 309 Solutions for Practice Test — May 7, 2007
5. The condition that $x=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & x_{4} & x_{5}\end{array}\right]$ is orthogonal to v_{1} and v_{2} is equivalent to the system

$$
\left[\begin{array}{lllll}
1 & 5 & 4 & 5 & 3 \tag{*}\\
1 & 3 & 0 & 3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The system $\left({ }^{*}\right)$ is preserved by elementary row operations on the matrix, which is row equivalent to

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
1 & 5 & 4 & 5 & 3 \\
0 & -2 & -4 & -2 & -2
\end{array}\right] \rightarrow\left[\begin{array}{lllll}
1 & 5 & 4 & 5 & 3 \\
0 & 1 & 2 & 1 & 1
\end{array}\right]} \\
& \quad \rightarrow\left[\begin{array}{rrrrr}
1 & 0 & -6 & 0 & -2 \\
0 & 1 & 2 & 1 & 1
\end{array}\right]
\end{aligned}
$$

As in Problem 2, this is equivalent to the system

$$
\begin{aligned}
& x_{1}=6 x_{3}+2 x_{5} \\
& x_{2}=-2 x_{3}-x_{4}-x_{5}
\end{aligned}
$$

Adding the equations $x_{3}=x_{3}, x_{4}=x_{4}$, and $x_{5}=x_{5}$, this is equivalent to

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=x_{3}\left[\begin{array}{r}
6 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
0 \\
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
2 \\
-1 \\
0 \\
0 \\
1
\end{array}\right]
$$

It is easy to check that these three vectors are orthogonal to v_{1} and v_{2}, and that the three vectors are a basis for $\left\{v_{1}, v_{2}\right\}^{\perp}$.
6. By definition, for $v=\left[\begin{array}{lll}2 & 1 & 0\end{array}\right]$ and $u=\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]$, the projection of v onto u is that vector $c u$ (that is, for some scalar c) such that $c u$ and $v-c u$ are orthogonal. This is equivalent to $(c u, v-c u)=c((u, v)-c(u, u))=0$ so that

$$
c=\frac{(u, v)}{(u, u)}=\frac{2}{5}
$$

Thus $c u=(2 / 5)\left[\begin{array}{lll}0 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}0 & 4 / 5 & 2 / 5\end{array}\right]$ and $w=v-c u=\left[\begin{array}{lll}2 & 1 / 5 & -2 / 5\end{array}\right]$. It is easy to check that

$$
(c u, w)=\left(\left[\begin{array}{c}
0 \\
4 / 5 \\
2 / 5
\end{array}\right],\left[\begin{array}{c}
2 \\
1 / 5 \\
-2 / 5
\end{array}\right]\right)=0
$$

Ma 309 Solutions for Practice Test — May 7, 2007...................................... . . 4
7. The characteristic polynomial of the matrix is

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccc}
\lambda-2 & 2 & -3 \\
0 & \lambda-3 & 2 \\
0 & 1 & \lambda-2
\end{array}\right]=(\lambda-2)((\lambda-3)(\lambda-2)-2) \\
& \quad=(\lambda-2)\left(\lambda^{2}-5 \lambda+4\right)=(\lambda-2)(\lambda-1)(\lambda-4)
\end{aligned}
$$

Since the eigenvalues are the roots of the characteristic polynomial, the eigenvalues are $\lambda_{1}=2, \lambda_{2}=1$, and $\lambda_{3}=4$.

