Ma 309 - Matrix Algebra
 Midterm Test \#2

Prof. Sawyer - Washington Univ. - March 28, 2007
Calculators cannot be used. Closed textbook and notes.
Six problems on two pages.
Different parts of problems may not be equally weighted.

1. Find the rank of the matrix

$$
A=\left[\begin{array}{rrrr}
2 & 3 & 7 & 4 \\
1 & 2 & 4 & 2 \\
-1 & 1 & 5 & 4
\end{array}\right]
$$

2. Let x, y be vectors in R^{n} (that is, $n \times 1$ column vectors).
(a) Find the dimensions of the matrices $x y^{T}$ and $x^{T} y$. (That is, $a \times b$ for what integers a and b ?)
(b) Prove that $\operatorname{tr}\left(x y^{T}\right)=x^{T} y$. (Recall that $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$ if A is an $n \times n$ matrix with entries $a_{i j}$.)
3. Let $W=\left\{x\right.$ in $\left.R^{4}: x_{1}-x_{4}=x_{2}-x_{3}\right\}$ where $x_{1}, x_{2}, x_{3}, x_{4}$ are the components of x.
(a) Show that W is a subspace of R^{4}. That is, if x, y are in R^{4} and c is a real number, then $c x$ in W and $x+y$ in W.
(b) Find a basis for the vector space W.
(c) What is the dimension of W ? Why?
4. Let $w_{1}, w_{2}, \ldots, w_{n}$ be orthogonal nonzero vectors in a vector space V with an inner product (u, v). Suppose that

$$
x=\sum_{i=1}^{n} c_{i} w_{i}
$$

where x in V for real numbers c_{i}. Find c_{i} in terms of x, w_{i}, and the inner product in V.
5. Define

$$
(u, v)_{A}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} u_{i} v_{j}
$$

for u, v in R^{n} with components u_{i}, v_{j} for some $n \times n$ matrix A with entries $\left\{A_{i j}\right\}$. Show that a sufficient condition for

$$
(B u, v)_{A}=(u, B v)_{A} \quad \text { for all } u, v \text { in } R^{n}
$$

for an $n \times n$ matrix B is the relation $A B=B^{T} A$, or equivalently that $B^{T}=A B A^{-1}$ if A is invertible. (Hint: Expand all expressions into double or triple sums and see if you can find a pattern.)

Ma 309 Midterm Test \#2 — March 28, 2007.. . . 2
6. Let $V=\operatorname{span}\left\{v_{1}, v_{2}\right\}$ for $v_{1}=\left[\begin{array}{l}1 \\ 2 \\ 4\end{array}\right]$ and $v_{2}=\left[\begin{array}{l}3 \\ 1 \\ 7\end{array}\right]$ in R^{3}. Find a basis in R^{3} for

$$
V^{\perp}=\left\{x \text { in } R^{3}:\left(x, v_{1}\right)=\left(x, v_{2}\right)=0\right\}
$$

where (u, v) is the usual inner product (or dot product) in R^{3}.

