
Ma309 — Matrix Algebra
Solutions for Midterm Test #2

Prof. Sawyer — Washington Univ. — March 28, 2007

1. Using elementary row operations:

A =




2 3 7 4
1 2 4 2
−1 1 5 4


 →




0 5 17 12
0 3 9 6
−1 1 5 4




→



1 −1 −5 −4
0 1 3 2
0 5 17 12


 →




1 0 −2 −2
0 1 3 2
0 0 1 1




after dividing the last row by 2. Since each row has a leading 1, rank(A)=3.

2. (a) Since x and y are n× 1 column vectors, xT and yT are 1× n row
vectors. Thus xyT is (n×1)×(1×n) = n×n and xT y is (1×n)×(n×1) =
1× 1. In fact, xT y is the number

∑n
i=1 xiyi.

(b) By matrix multiplication,

xyT =




x1

x2

. . .
xn


 [y1 y2 . . . yn] =




x1y1 x1y2 . . . x1yn

x2y1 x2y2 . . . x2yn

. . . . . . . . . . . .
xny1 xny2 . . . xnyn




If A = xyT , then Aij = (xyT )ij = xiyj . Thus tr(A) = tr(xyT ) =∑n
i=1 aii =

∑n
i=1 xiyi = xT y.

3. Here W = {x in R4 : x1 − x4 = x2 − x3 } where x1, x2, x3, x4 are the
components of x.
(a) Proof #1: The condition on x = [x1 x2 x3 x4]T to be in W is linear.

One can then check that if x, y are in W , then the components of cx
and x + y satisfy the relation to be in W , so that cx, x + y are in W
as well. This means that W is a vector subpace of R4.
Proof #2: If x satisfies the relation to be in W , then

x =




x1

x2

x3

x4


 =




x2 − x3 + x4

x2

x3

x4


 = x2




1
1
0
0


 + x3



−1
0
1
0


 + x4




1
0
0
1




= x2v1 + x3v2 + x4v3
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where x2, x3, x4 are arbitrary and v1, v2, v3 are the three vectors on the
right on the first line. Thus W = span{v1, v2, v3}. Since the vector span
of any set of vectors is automatically a vector space, W is a vector space.
(b) It is easy to check that the vectors v1, v2, v3 above are linearly inde-

pendent. Since they span W , they form a basis for W .
(c) Since W has a basis composed of 3 vectors, dim(W ) = 3.

4. Here x =
∑n

i=1 ciwi =
∑n

j=1 cjwj where w1, w2, . . . , wn are orthogonal
nonzero vectors with respect to an inner product (u, v). This means that

(x,wi) =
( n∑

j=1

cjwj , wi

)
=

n∑

j=1

cj (wj , wi) = ci(wi, wi)

since (wi, wj) = 0 for j 6= i. Since (wi, wi) > 0 since wi is nonzero, this
implies ci = (x,wi)/(wi, wi).

5. (This was the hardest question.)
Proof #1: If (u, v)0 =

∑n
i=1 uivi is the usual inner product in Rn,

then (Cu, v)0 = (u,CT v)0 for any n× n matrix C. This is in the text: A
short proof is

(Cu, v)0 =
n∑

i=1

(Cu)ivi =
n∑

i=1

( n∑

k=1

Cikuk

)
vi =

n∑

i=1

n∑

k=1

Cikukvi

=
n∑

k=1

uk

n∑

i=1

Cikvi =
n∑

k=1

uk

n∑

i=1

(CT )kivi = (u,CT v)0

By definition, (u, v)A = (u,Av)0. Thus

(Bu, v)A = (Bu, Av)0 = (Bu, (Av))0 = (u,BT Av)0
(u,Bv)A = (u, (Bv))A = (u,A(Bv))0 = (u,ABv)0

Hence if AB = BT A, then (Bu, v)A = (u,Bv)A. (Note that a hint is not
mandatory! There are other short proofs that do not involve expanding
(Bu, v)A as a triple sum as in the second proof.)

Proof #2: Note

(Bu, v)A =
n∑

i=1

n∑

j=1

Aij(Bu)ivj =
n∑

i=1

n∑

j=1

Aij

n∑

k=1

Bikukvj

(u, Bv)A =
n∑

i=1

n∑

j=1

Aijui(Bv)j =
n∑

i=1

n∑

j=1

Aijui

n∑

k=1

Bjkvk
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The key is that you get two triple sums, not double sums. Note also

n∑

i=1

AijBik =
n∑

i=1

(BT )kiAij = (BT A)kj

n∑

j=1

AijBjk = (AB)ik

Thus by summing over i in the first triple sum and over j in the second
triple sum,

(Bu, v)A =
n∑

j=1

n∑

k=1

(BT A)kjukvj =
n∑

j=1

n∑

i=1

(BT A)ijuivj

(u,Bv)A =
n∑

i=1

n∑

k=1

(AB)ikuivk =
n∑

i=1

n∑

j=1

(AB)ijuivj

The two final sums are the same if AB = BT A.

6. If V = span{v1, v2}, then x in V ⊥ if and only if (x, v1) = (x, v2) = 0
for x = [x1 x2 x3]T .

Proof #1: This is equivalent to two equations in three unknowns:

x1 + 2x2 + 4x3 = 0
3x1 + x2 + 7x3 = 0

(1)

By elementary row operations
[

1 2 4
3 1 7

]
→

[
1 2 4
0 −5 −5

]
→

[
1 2 4
0 1 1

]
→

[
1 0 2
0 1 1

]

This means that the system (1) is equivalent to the system

x1 + 2x3 = 0
x2 + x3 = 0

This in turn is equivalent to

x =




x1

x2

x3


 =



−2x3

−x3

x3


 = x3



−2
−1
1


 = −x3




2
1
−1



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with no constraints on x3. This means that { [−2 − 1 1]T } is a basis
for V ⊥.

Proof #2: A few people tried the following approach: (i) Use Gram-
Schmidt orthogonalization to convert { v1, v2 } to an orthogonal basis
{ v1, w2 } for V where w2 = v2− cv1. Then (ii) use Gram-Schmidt orthog-
onalization again to extend { v1, w2 } to an orthogonal basis { v1, w2, w3 }
for all of R3. Then one must have V ⊥ = span{w3}, so that {w3 } is a
basis for V ⊥.

This approach is OK, but is computationally more difficult. It is
not difficult to find w2 with integer entries, but no one was able to push
through the argument to find w3 (which by the first proof would have to
be a constant times [2 1 − 1]T ).


