Ma 309 - Matrix Algebra Solutions for Midterm Test \#2

Prof. Sawyer - Washington Univ. - March 28, 2007

1. Using elementary row operations:

$$
\begin{aligned}
A & =\left[\begin{array}{rrrr}
2 & 3 & 7 & 4 \\
1 & 2 & 4 & 2 \\
-1 & 1 & 5 & 4
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
0 & 5 & 17 & 12 \\
0 & 3 & 9 & 6 \\
-1 & 1 & 5 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{rrrr}
1 & -1 & -5 & -4 \\
0 & 1 & 3 & 2 \\
0 & 5 & 17 & 12
\end{array}\right] \rightarrow\left[\begin{array}{rrrr}
1 & 0 & -2 & -2 \\
0 & 1 & 3 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

after dividing the last row by 2 . Since each row has a leading $1, \operatorname{rank}(A)=3$.
2. (a) Since x and y are $n \times 1$ column vectors, x^{T} and y^{T} are $1 \times n$ row vectors. Thus $x y^{T}$ is $(n \times 1) \times(1 \times n)=n \times n$ and $x^{T} y$ is $(1 \times n) \times(n \times 1)=$ 1×1. In fact, $x^{T} y$ is the number $\sum_{i=1}^{n} x_{i} y_{i}$.
(b) By matrix multiplication,

$$
x y^{T}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\ldots \\
x_{n}
\end{array}\right]\left[\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{n}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} y_{1} & x_{1} y_{2} & \ldots & x_{1} y_{n} \\
x_{2} y_{1} & x_{2} y_{2} & \ldots & x_{2} y_{n} \\
\ldots & \ldots & \ldots & \ldots \\
x_{n} y_{1} & x_{n} y_{2} & \ldots & x_{n} y_{n}
\end{array}\right]
$$

If $A=x y^{T}$, then $A_{i j}=\left(x y^{T}\right)_{i j}=x_{i} y_{j}$. Thus $\operatorname{tr}(A)=\operatorname{tr}\left(x y^{T}\right)=$ $\sum_{i=1}^{n} a_{i i}=\sum_{i=1}^{n} x_{i} y_{i}=x^{T} y$.
3. Here $W=\left\{x\right.$ in $\left.R^{4}: x_{1}-x_{4}=x_{2}-x_{3}\right\}$ where $x_{1}, x_{2}, x_{3}, x_{4}$ are the components of x.
(a) Proof \#1: The condition on $x=\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]^{T}$ to be in W is linear. One can then check that if x, y are in W, then the components of $c x$ and $x+y$ satisfy the relation to be in W, so that $c x, x+y$ are in W as well. This means that W is a vector subpace of R^{4}.
Proof $\# 2$: If x satisfies the relation to be in W, then

$$
\begin{aligned}
x & =\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{2}-x_{3}+x_{4} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-1 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right] \\
& =x_{2} v_{1}+x_{3} v_{2}+x_{4} v_{3}
\end{aligned}
$$

where x_{2}, x_{3}, x_{4} are arbitrary and v_{1}, v_{2}, v_{3} are the three vectors on the right on the first line. Thus $W=\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$. Since the vector span of any set of vectors is automatically a vector space, W is a vector space. (b) It is easy to check that the vectors v_{1}, v_{2}, v_{3} above are linearly independent. Since they span W, they form a basis for W.
(c) Since W has a basis composed of 3 vectors, $\operatorname{dim}(W)=3$.
4. Here $x=\sum_{i=1}^{n} c_{i} w_{i}=\sum_{j=1}^{n} c_{j} w_{j}$ where $w_{1}, w_{2}, \ldots, w_{n}$ are orthogonal nonzero vectors with respect to an inner product (u, v). This means that

$$
\left(x, w_{i}\right)=\left(\sum_{j=1}^{n} c_{j} w_{j}, w_{i}\right)=\sum_{j=1}^{n} c_{j}\left(w_{j}, w_{i}\right)=c_{i}\left(w_{i}, w_{i}\right)
$$

since $\left(w_{i}, w_{j}\right)=0$ for $j \neq i$. Since $\left(w_{i}, w_{i}\right)>0$ since w_{i} is nonzero, this implies $c_{i}=\left(x, w_{i}\right) /\left(w_{i}, w_{i}\right)$.
5. (This was the hardest question.)

Proof \#1: If $(u, v)_{0}=\sum_{i=1}^{n} u_{i} v_{i}$ is the usual inner product in R^{n}, then $(C u, v)_{0}=\left(u, C^{T} v\right)_{0}$ for any $n \times n$ matrix C. This is in the text: A short proof is

$$
\begin{aligned}
(C u, v)_{0} & =\sum_{i=1}^{n}(C u)_{i} v_{i}=\sum_{i=1}^{n}\left(\sum_{k=1}^{n} C_{i k} u_{k}\right) v_{i}=\sum_{i=1}^{n} \sum_{k=1}^{n} C_{i k} u_{k} v_{i} \\
& =\sum_{k=1}^{n} u_{k} \sum_{i=1}^{n} C_{i k} v_{i}=\sum_{k=1}^{n} u_{k} \sum_{i=1}^{n}\left(C^{T}\right)_{k i} v_{i}=\left(u, C^{T} v\right)_{0}
\end{aligned}
$$

By definition, $(u, v)_{A}=(u, A v)_{0}$. Thus

$$
\begin{aligned}
& (B u, v)_{A}=(B u, A v)_{0}=(B u,(A v))_{0}=\left(u, B^{T} A v\right)_{0} \\
& (u, B v)_{A}=(u,(B v))_{A}=(u, A(B v))_{0}=(u, A B v)_{0}
\end{aligned}
$$

Hence if $A B=B^{T} A$, then $(B u, v)_{A}=(u, B v)_{A}$. (Note that a hint is not mandatory! There are other short proofs that do not involve expanding $(B u, v)_{A}$ as a triple sum as in the second proof.)

Proof \#2: Note

$$
\begin{aligned}
& (B u, v)_{A}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j}(B u)_{i} v_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} \sum_{k=1}^{n} B_{i k} u_{k} v_{j} \\
& (u, B v)_{A}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} u_{i}(B v)_{j}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} u_{i} \sum_{k=1}^{n} B_{j k} v_{k}
\end{aligned}
$$

Ma 309 Solutions for Midterm Test \#2 — March 28, 2007.
The key is that you get two triple sums, not double sums. Note also

$$
\begin{aligned}
& \sum_{i=1}^{n} A_{i j} B_{i k}=\sum_{i=1}^{n}\left(B^{T}\right)_{k i} A_{i j}=\left(B^{T} A\right)_{k j} \\
& \sum_{j=1}^{n} A_{i j} B_{j k}=(A B)_{i k}
\end{aligned}
$$

Thus by summing over i in the first triple sum and over j in the second triple sum,

$$
\begin{aligned}
& (B u, v)_{A}=\sum_{j=1}^{n} \sum_{k=1}^{n}\left(B^{T} A\right)_{k j} u_{k} v_{j}=\sum_{j=1}^{n} \sum_{i=1}^{n}\left(B^{T} A\right)_{i j} u_{i} v_{j} \\
& (u, B v)_{A}=\sum_{i=1}^{n} \sum_{k=1}^{n}(A B)_{i k} u_{i} v_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n}(A B)_{i j} u_{i} v_{j}
\end{aligned}
$$

The two final sums are the same if $A B=B^{T} A$.
6. If $V=\operatorname{span}\left\{v_{1}, v_{2}\right\}$, then x in V^{\perp} if and only if $\left(x, v_{1}\right)=\left(x, v_{2}\right)=0$ for $x=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]^{T}$.

Proof \#1: This is equivalent to two equations in three unknowns:

$$
\begin{align*}
& x_{1}+2 x_{2}+4 x_{3}=0 \\
& 3 x_{1}+x_{2}+7 x_{3}=0 \tag{1}
\end{align*}
$$

By elementary row operations

$$
\left[\begin{array}{rrr}
1 & 2 & 4 \\
3 & 1 & 7
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 2 & 4 \\
0 & -5 & -5
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 2 & 4 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

This means that the system (1) is equivalent to the system

$$
\begin{aligned}
x_{1}+2 x_{3} & =0 \\
x_{2}+x_{3} & =0
\end{aligned}
$$

This in turn is equivalent to

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-2 x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right]=x_{3}\left[\begin{array}{r}
-2 \\
-1 \\
1
\end{array}\right]=-x_{3}\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]
$$

Ma 309 Solutions for Midterm Test \#2 — March 28, 2007............................ . . 4
with no constraints on x_{3}. This means that $\left\{\left[\begin{array}{lll}-2 & -1 & 1\end{array}\right]^{T}\right\}$ is a basis for V^{\perp}.

Proof \#2: A few people tried the following approach: (i) Use GramSchmidt orthogonalization to convert $\left\{v_{1}, v_{2}\right\}$ to an orthogonal basis $\left\{v_{1}, w_{2}\right\}$ for V where $w_{2}=v_{2}-c v_{1}$. Then (ii) use Gram-Schmidt orthogonalization again to extend $\left\{v_{1}, w_{2}\right\}$ to an orthogonal basis $\left\{v_{1}, w_{2}, w_{3}\right\}$ for all of R^{3}. Then one must have $V^{\perp}=\operatorname{span}\left\{w_{3}\right\}$, so that $\left\{w_{3}\right\}$ is a basis for V^{\perp}.

This approach is OK, but is computationally more difficult. It is not difficult to find w_{2} with integer entries, but no one was able to push through the argument to find w_{3} (which by the first proof would have to be a constant times $\left.\left[\begin{array}{lll}2 & 1 & -1\end{array}\right]^{T}\right)$.

