The regression equation is
$\mathrm{P} / E=6.70+0.183$ Profit +0.213 Growth +0.84 Dil + 3.82 Drug

Predictor	Coef	StDev	T	P
Constant	6.704	2.178	3.08	0.008
Profit	0.1827	0.2092	0.87	0.397
Growth	0.2128	0.1311	1.62	0.127
Oil	0.835	1.509	0.55	0.589
Drug	3.819	1.779	2.15	0.050
S $=2.309$	R-Sq $=69.5 \%$	R-Sq $($ adj $)=60.8 \%$		

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	4	169.887	42.472	7.97	0.001
Residual Error	14	74.650	5.332		
Total	18	244.537			

Source	DF	Seq SS
Profit	1	131.398
Growth	1	13.194
Oil	1	0.724
Drug	1	24.570

Only the DRUG coefficient is significant at $\alpha=0.05$.
(c) If we choose the drug/healthcare industry as the baseline, then we would instead have an indicator COMPUTER. There is no need to refit the model. The new coefficients, denoted with a subscript of N, depend on the previously fitted coefficients, denoted with a subscript of O, as below:

$$
\text { Constant }_{N}=\text { Constant }_{O}+\text { Drug }_{O}=6.704+3.819=10.523 .
$$

Since now the constant term represents the baseline industry, DRUG, the PROFIT and GROWTH coefficients will not change.

$$
\mathrm{OIL}_{N}=\mathrm{OIL}_{O}-\mathrm{DRUG}_{O}=0.835-3.819=-2.984 .
$$

$$
\operatorname{COMPUTER}_{N}=\text { COMPUTER }_{O}-\mathrm{DRUG}_{O}=0-3.819=-3.819
$$

Therefore the new model would be
$\hat{y}=10.523+0.183$ PROFIT +0.213 GROWTH -2.984 OIL -3.819 COMPUTER . $:$
11.40 (a) The partial correlation coefficients are

$$
r_{y x_{1} \mid x_{2}}=\sqrt{\frac{\operatorname{SSE}\left(x_{2}\right)-\operatorname{SSE}\left(x_{1}, x_{2}\right)}{\operatorname{SSE}\left(x_{2}\right)}}=\sqrt{\frac{12.606-5.988}{12.606}}=0.725,
$$

$$
r_{y x_{2} \mid x_{1}}=\sqrt{\frac{\operatorname{SSE}\left(x_{1}\right)-\operatorname{SSE}\left(x_{1}, x_{2}\right)}{\operatorname{SSE}\left(x_{1}\right)}}=\sqrt{\frac{13.519-5.988}{13.519}}=0.746
$$

(b) The F statistics for testing the significance of these partial correlation coeficients are

$$
\begin{aligned}
& F_{1}=\frac{\operatorname{SSE}\left(x_{2}\right)-\operatorname{SSE}\left(x_{1}, x_{2}\right)}{\operatorname{SSE}\left(x_{2}\right) /(n-3)}=\frac{12.606-5.988}{5.988 /(40-3)}=40.90 \\
& F_{2}=\frac{\operatorname{SSE}\left(x_{1}\right)-\operatorname{SSE}\left(x_{1}, x_{2}\right)}{\operatorname{SSE}\left(x_{1}, x_{2}\right) /(n-3)}=\frac{13.519-5.988}{5.988 /(40-3)}=46.54
\end{aligned}
$$

Then

$$
\begin{aligned}
& t_{1}=\sqrt{40.90}=6.395 \\
& t_{2}=\sqrt{46.54}=6.822
\end{aligned}
$$

These the match the t statistics obtained in Exercise 11.2.
11.41 (a) $r_{y x_{1}}=0.378, r_{y x_{2}}=-0.093$, and $r_{y x_{3}}=0.003 . x_{1}$ would enter first.
(b) The partial correlation coefficients are

$$
\begin{aligned}
& r_{y x_{2} \mid x_{1}}=\sqrt{\frac{\operatorname{SSE}\left(x_{1}\right)-\operatorname{SSE}\left(x_{1}, x_{2}\right)}{\operatorname{SSE}\left(x_{1}\right)}}=\sqrt{\frac{16198-13322}{16198}}=0.421 \\
& r_{y x_{3} \mid x_{1}}=\sqrt{\frac{\operatorname{SSE}\left(x_{1}\right)-\operatorname{SSE}\left(x_{1}, x_{3}\right)}{\operatorname{SSE}\left(x_{1}\right)}}=\sqrt{\frac{16198-15258}{16198}}=0.241
\end{aligned}
$$

(c) The F statistics for testing the significance of these partial correlation coeficients are

$$
\begin{aligned}
& F_{2}=\frac{\operatorname{SSE}\left(x_{1}\right)-\operatorname{SSE}\left(x_{1}, x_{2}\right)}{\operatorname{SSE}\left(x_{1}, x_{2}\right) /(n-3)}=\frac{16198-13322}{13322 /(38-3)}=7.556 \\
& F_{3}=\frac{\operatorname{SSE}\left(x_{1}\right)-\operatorname{SSE}\left(x_{1}, x_{3}\right)}{\operatorname{SSE}\left(x_{1}, x_{3}\right) /(n-3)}=\frac{16198-15258}{15258 /(38-3)}=2.156
\end{aligned}
$$

Height $\left(x_{2}\right)$ is the better predictor given that brain size is included in the model.
11.42 (a) $r_{\log y, \log x_{1}}=-0.761, r_{\log y, \log x_{2}}=-0.549$, and $r_{\log y, x_{3}}=-0.644$. $\log x_{1}$ would enter first.
(b) The partial correlation coefficients are

$$
\begin{aligned}
& r_{\log y_{1} \log x_{2} \mid \log x_{1}}=\sqrt{\frac{\operatorname{SSE}\left(\log x_{1}\right)-\operatorname{SSE}\left(\log x_{1}, \log x_{2}\right)}{\operatorname{SSE}\left(\log x_{1}\right)}}=\sqrt{\frac{6.112-5.815}{6.112}}=0.220 \\
& r_{\log y, x_{3} \mid \log x_{1}}=\sqrt{\frac{\operatorname{SSE}\left(\log x_{1}\right)-\operatorname{SSE}\left(\log x_{1}, x_{3}\right)}{\operatorname{SSE}\left(\log x_{1}\right)}}=\sqrt{\frac{6.112-6.053}{6.112}}=0.098
\end{aligned}
$$

(c) The \boldsymbol{F} statistics for testing the significance of these partial correlation coeficients are

$$
\begin{gathered}
\text { atistics for testing the signiticance or } \\
\boldsymbol{F}_{\log x_{2}}=\frac{\operatorname{SSE}\left(\log x_{1}\right)-\operatorname{SSE}\left(\log x_{1}, \log x_{2}\right)}{\operatorname{SSE}\left(\log x_{1}, \log x_{2}\right) /(n-3)}=\frac{6.112-5.815}{5.815 /(38-3)}=1.788, \\
\boldsymbol{F}_{x_{3}}=\frac{\operatorname{SSE}\left(\log x_{1}\right)-\operatorname{SSE}\left(\log x_{1}, x_{3}\right)}{\operatorname{SSE}\left(\log x_{1}, x_{3}\right) /(n-3)}=\frac{6.112-6.053}{6.053 /(38-3)}=0.341
\end{gathered}
$$

\log (calcium) is the better predictor, given that \log (Alkalinity) is included in the model.

$$
\begin{aligned}
F_{p} & =\frac{\left(\operatorname{SSE}_{p-1}-\operatorname{SSE}_{p}\right) / 1}{\operatorname{SSE}_{p} /[n-(p+1)]} \\
& =\frac{\left(r_{y x_{p} \mid x_{1}, \ldots, x_{p-1}}^{2}\right)\left(\operatorname{SSE}_{p-1}\right)}{\operatorname{SSE}_{p} /[n-(k+1)]} \\
& =\frac{r_{y x_{p} \mid x_{1}, \ldots, x_{p-1}}^{2}[n-(k+1)]}{\operatorname{SSE}_{p} / \operatorname{SSE}_{p-1}} \\
& =\frac{r_{y x_{p} \mid x_{1}, \ldots, x_{p-1}}^{2}[n-(k+1)]}{1-r_{y x_{p} \mid x_{1}, \ldots, x_{p-1}}^{2}}
\end{aligned}
$$

As $r_{y x_{p} \mid x_{1}, \ldots, x_{p-1}}^{2}$ increases, the numerator increases and the denominator decreases, so that $\boldsymbol{F}_{\boldsymbol{p}}$ is an increasing function in $r_{y x_{p} \mid x_{1}, \ldots, x_{p-1}}^{2}$.
(a) The stepwise regression output is shown below:

Stepwise Regression

F-to-Enter:	2.00	(F-to-Remove:	2.00
Response is	P/E	on 4 predictors,	with $\mathrm{N}=19$
Step	1	2	
Constant	10.309	8.319	
Drug	5.6	4.7	
T-Value	5.02	4.19	
Growth		0.23	
T-Value		1.97	
S	2.41	2.23	
R-Sq	59.73	67.60	

Drug enters at step 1, and Growth enters at step 2. The final model is $\hat{y}=8.319+$ 4.7 Drug +0.23 Growth . To determine if these factors are significant at $\alpha=0.05$, compare the t statistics to $t_{19-3,0.025}=2.120$. Only Drug is significant.
(b) The best subsets regression output is shown below:

Best Subsets Regression

Response is P/E Ratio

P	G	
r		
O	O	D

Vars	R-Sq	$\begin{aligned} & \text { Adj. } \\ & \text { R-Sq } \end{aligned}$	C-p	s	$\begin{array}{llll} f & \text { w } & 0 & r \\ \text { i t } & i & u \\ t & h & l & g \end{array}$
1	59.7	57.4	3.5	2.4067	X
1	53.7	51.0	6.2	2.5798	X
1	32.1	28.1	16.1	3.1247	X
1	17.3	12.4	22.9	3.4500	X
2	67.6	63.5	1.9	2.2254	$X \quad X$
2	63.5	59.0	3.7	2.3611	X X
2	59.8	54.8	5.4	2.4788	X X
2	59.1	54.0	5.7	2.4993	X X
2	53.8	48.0	8.2	2.6582	X X
3	68.8	62.6	3.3	2.2551	X X X
3	67.8	61.4	3.8	2.2908	XXX
3	63.7	56.5	5.6	2.4316	X XX
3	59.4	51.3	7.6	2.5719	X X X
4	69.5	60.8	5.0	2.3091	X X X X

According to the C_{p} criterion, the best subset includes the Growth and Drug factors, with a C_{p} of 1.9. This is identical to the model found in part (a).
11.45 The best subsets regression output is given below:

Best Subsets Regression

Response is $\log (y)$

Using the C_{p} criterion, the model with only $\log x_{1}$ has the lowest C_{p}. This is the same model that was selected in Exercise 11.19. The fitted model is $\log \hat{y}=7.21-0.398 \log x_{1}$, where $\hat{\beta}_{\log x_{1}}$ was highly significant (P-value ≈ 0.000).

Vainheinyat	Scre	P	Brar dif	MSE $_{p}$	Adj. r_{p}^{2}	C_{p}
Nome	950	0	19	50	0	20
		1	18	40	0.2	12.8
x_{1}	720	1				
${ }^{2}$	630	1	18	35	0.3	9.2
		1	18	30	0.4	5.6
x_{3}	540					
x_{1}, x_{2}	595	2	17	35	0.3	9.8
x_{1}, x_{3}	425	2	17	25	0.5	3
x_{2}, x_{3}	510	2	17	30	0.4	6.4
x_{1}, x_{2}, x_{3}	400		316	25	0.5	4

(b) Subsets (x_{1}, x_{3}) and (x_{1}, x_{2}, x_{3}) have the maximum adjusted r_{p}^{2}. Subset $\left(x_{1}, x_{3}\right)$ has the minimum C_{p}. Choose (x_{1}, x_{3}) since it has less variables and the minimum C_{p}.
(c) x_{3} gives the biggest reduction in $S S E_{p}$ (no need to calculate partial F 's for x_{1}, x_{2}, x_{3}). So it will be the first variable to enter the model. The F to enter for x_{3} is

$$
F_{3}=\frac{950-540}{540 / 18}=13.67
$$

Since $F_{3}>F_{\text {IN }}=4.0, x_{3}$ will enter the model.
(d) (x_{1}, x_{3}) gives the biggest reduction in $S S E_{p}\left(x_{3}\right)$ (no need to calculate partial F for x_{2}. The F to enter for x_{1} is

$$
F_{1 \mid 3}=\frac{\operatorname{SSE}\left(x_{3}\right)-\operatorname{SSE}\left(x_{1}, x_{3}\right)}{\operatorname{SSE}\left(x_{1}, x_{3}\right) /(20-3)}=\frac{540-425}{425 / 17}=4.6
$$

Since $F_{1 \mid 3}>F_{\mathrm{IN}}, x_{1}$ will enter the model next. Its partial correlation is

$$
r_{y x_{1} \mid x_{3}}^{2}=\frac{S S E\left(x_{3}\right)-S S E\left(x_{1}, x_{3}\right)}{S S E\left(x_{3}\right)}=\frac{540-425}{540}=0.213 .
$$

(e) The F to remove for x_{3} is

$$
F_{3 \mid 1}=\frac{S S E\left(x_{1}\right)-S S E\left(x_{1}, x_{3}\right)}{S S E\left(x_{1}, x_{3}\right) /(20-3)}=\frac{720-425}{425 / 17}=11.8
$$

Since $F_{3 \mid 1}>F_{\text {OUT }}=4.0, x_{3}$ will not be removed.
(f) The F to enter for x_{2} is

$$
\begin{aligned}
& \text { er for } x_{2} \text { is } \\
& F_{2 \mid 1,3}=\frac{S S E\left(x_{1}, x_{3}\right)-S S E\left(x_{1}, x_{2}, x_{3}\right)}{S S E\left(x_{1}, x_{2}, x_{3}\right) /(20-4)}=\frac{425-500}{400 / 16}=1.0 .
\end{aligned}
$$

Since $F_{2 \mid 1,3}<F_{\mathrm{IN}}=4.0, x_{2}$ will not enter, and the full model will not be chosen.

Chapter 12 Solutions

Solutions to Section 12.1

12.1 (a) Sugar:

$$
s^{2}=\frac{(2.138)^{2}+(1.985)^{2}+(1.865)^{2}}{3}=3.996
$$

so that $s=\sqrt{3.996}=1.999$ with $3 \times 19=57$ d.f. Using the critical value $t_{57,0.025} \approx 2.000$, the 95% CI's are :

$$
\begin{array}{ll}
\text { Shelf } 1 & : 4.80 \pm(2.000) \times \frac{1.999}{\sqrt{20}}=[3.906,5.694] \\
\text { Shelf } 2 & : 9.85 \pm(2.000) \times \frac{1.999}{\sqrt{20}}=[8.956,10.744] \\
\text { Shelf } 3 & : 6.10 \pm(2.000) \times \frac{1.999}{\sqrt{20}}=[5.206,6.994]
\end{array}
$$

Fiber:

$$
s^{2}=\frac{(1.166)^{2}+(1.162)^{2}+(1.277)^{2}}{3}=1.447
$$

so that $s=\sqrt{1.447}=1.203$ with $3 \times 19=57$ d.f. Using the critical value $t_{57,0.025} \approx 2.000$, the 95% CI's are :

$$
\begin{array}{ll}
\text { Shelf } 1 & : 1.68 \pm(2.000) \times \frac{1.203}{\sqrt{20}}=[1.142,2.218] \\
\text { Shelf } 2 & : 0.95 \pm(2.000) \times \frac{1.203}{\sqrt{20}}=[0.412,1.488] \\
\text { Shelf } 3 & : \quad 2.17 \pm(2.000) \times \frac{1.203}{\sqrt{20}}=[1.632,2.708]
\end{array}
$$

Shelf 2 cereals are higher in sugar content than shelves 1 and 3 , since the CI for shelf 2 is above those of shelves 1 and 3 . Similarly, the shelf 2 fiber content CI is below that 0 shelf 3 . So in general, shelf 2 cereals are higher in sugar and lower in fiber.
(b) Sugar:

$$
\begin{aligned}
S S E & =57 \times 3.996=227.80 \\
S S A & =n \sum \bar{y}_{i}^{2}-N \overline{\bar{y}}^{2} \\
& =20\left[(4.80)^{2}+(9.85)^{2}+(6.10)^{2}\right]-60 \times(6.92)^{2} \\
& =275.03
\end{aligned}
$$

Then the ANOVA table is below:

Analysis of Variance				
Source	SS	d.f.	MS	F
Shelves	275.03	2	137.5	34.41
Error	227.80	57	3.996	
Total	502.83	59		

Since $F>f_{2,57,0.05}=3.15$, there do appear to be significant differences among the shelves in terms of sugar content.
Fiber:

$$
\begin{aligned}
S S E & =57 \times 1.447=82.47 \\
S S A & =n \sum \bar{y}_{i}^{2}-N \overline{\bar{y}}^{2} \\
& =20\left[(1.68)^{2}+(0.95)^{2}+(2.17)^{2}\right]-60 \times(1.60)^{2} \\
& =15.08 .
\end{aligned}
$$

Then the ANOVA table is below:

Analysis of Variance				
Source	SS	d.f.	MS	F
Shelves	15.08	2	7.54	5.21
Error	82.47	57	1.447	
Total	97.55	59		

Since $F>f_{2,57,0.05}=3.15$, there do appear to be significant differences among the shelves in terms of fiber content, as well as sugar content.
(c) The grocery store strategy is to place high sugar/low fiber cereals at the eye height of school children where they can easily see them.
12.2 (a)

The boxplot indicates that the number of finger taps increases with higher doses of caffeine.
(b)

Analysis of Variance				
Source	SS	d.f.	MS	F
Dose	61.400	2	30.700	6.181
Error	134.100	27	4.967	
Total	195.500	29		

Since $F>f_{2,27,0.05}=3.35$, there do appear to be significant differences in the numbers of finger taps for different doses of caffeine.
(c)

From the plot of the residuals against the predicted values, the constant variance assumption appears satisfied. From the normal plot of the residuals, the residuals appear to follow the normal distribution.
12.3 (a)

The boxplot indicates that the control is higher than the two treatments in the average: number of eggs laid.
(b)

$125(a)$

Disease

The boxplot indicates that HBSC has the highest average hemoglobin level, followed by EBS, and then HBSS.

Analysis of Variance				
Source	SS	d.f.	MS	F
Disease type	99.889	2	49.945	49.999
Error	37.959	38	0.999	
Total	137.848	40		

Since $F>f_{2,38,0.05}=3.23$, there do appear to be significant differences in the hemoglobin levels between patients with different types of sickle cell disease.

From the plot of the residuals against the predicted values, the constant variance assumption appears satisfied. From the normal plot of the residuals, the residuals appear to follow the normal distribution.

From the plot of the residuals against the predicted values, the constant variance assumption appears satisfied. From the normal plot of the residuals, the residuals appear to follow the normal distribution.
(a)

The side-by-side boxplots of the pre-treatment weights overlap quite a bit, and don't indicate large differences among the groups.
(b)

Analysis of Variance				
Source	SS	d.f.	MS	F
Treatment	31.2	2	15.6	0.50
Error	1503.5	48	31.0	
Total	1534.7	50		

Since $F<f_{2,48,0.05}=3.19$, the pre-treatment weights are not significantly different among the different treatment groups.
(c)

Here the differences among the treatment groups are more pronounced. The family group appears to be different than the other two, but it is hard to tell if the differences are significant.
(d)

Analysis of Variance				
Source	SS	d.f.	MS	F
Treatment	479.3	2	239.7	3.85
Error	2990.6	48	62.3	
Total	3469.9	50		

Since $F>f_{2,48,0.05}=3.19$, the weight differences are significantly different among the different treatment groups.

Solutions to Section 12.2

12.8 Sugar: The number of comparisons is

$$
\binom{a}{2}=\binom{3}{2}=3
$$

Then

$$
t_{57, \frac{0.05}{2 \times 3}}=t_{57,0.0083}=2.468,
$$

and the Bonferroni critical value is

$$
t_{57,0.0083} s \sqrt{\frac{2}{n}}=2.468 \times 1.999 \sqrt{\frac{2}{20}}=1.56
$$

For the Tukey method,

$$
q_{3,57,0.05} \approx 3.40
$$

and the Tukey critical value is

$$
q_{3,57,0.05} s \sqrt{\frac{1}{n}}=3.40 \times 1.999 \sqrt{\frac{1}{20}}=1.52
$$

Since $t_{13}>2.051$, conclude that sites 1 and 3 are significantly different. Similarly, since $t_{23}>2.051$, conclude that sites 2 and 3 are significantly different. So the conclusion is the same as with the Tukey method, namely that all three sites are significantly different from one another.
12.10 The number of comparisons is

$$
\binom{a}{2}=\binom{3}{2}=3
$$

Then

$$
t_{38, \frac{0.01}{2 \times 3}}=t_{38,0.0017}=3.136
$$

and, since $s=\sqrt{0.999}=1$, the form of the Bonferroni confidence interval is

$$
\bar{y}_{i}-\bar{y}_{j} \pm(3.136)(1) \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}
$$

For the Tukey method,

$$
\frac{q_{3,38,0.01}}{\sqrt{2}} \approx \frac{4.39}{\sqrt{2}}=3.104
$$

and the form of the Tukey confidence interval is

$$
\bar{y}_{i}-\bar{y}_{j} \pm(3.104)(1) \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}}
$$

For the LSD method, $t_{38,0.01 / 2}=2.712$, and the form of the LSD confidence interval is

$$
\bar{y}_{i}-\bar{y}_{j} \pm(2.712)(1) \sqrt{\frac{1}{n_{i}}+\frac{1}{n_{j}}} .
$$

The 99% confidence intervals are summarized in the table below:

		Bonferroni		Tukey		LSD	
Comparison	$\left\|\bar{y}_{i}-\bar{y}_{j}\right\|$	Lower	Upper	Lower	Upper	Lower	Upper
HBSC(3) vs. HBS(2)	1.670	0.392	2.948	0.406	2.934	0.564	2.776
HBS(2) vs. HBSS(1)	1.918	0.656	3.179	0.669	3.166	0.825	3.010
HBSC(3) vs. HBSS(1)	3.588	2.462	4.713	2.475	4.700	2.614	4.561

Since all of these intervals are entirely above 0, all of the types of disease have significantly different hemoglobin levels from one another. Note that the Bonferroni method has the widest intervals, followed by the Tukey. The LSD intervals are narrowest because there is no adjustment for multiplicity.
12.11 The ANOVA output, including Tukey 90% confidence intervals, is given below: One-way Analysis of Variance

| Analysis of Variance for feight | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | SS | MS | F | P |
| Part | 3 | 81.1 .1 | 27.04 | 3.95 | 0.010 |

Error		705.67	6.85	Individual 95\% CIs For Mean Based on Pooled StDev		
Total	106	786.79				
Level	N	Mean	StDev	+	-	
Bass1	39	70.718	2.361		(--	
Bass2	26	71.385	2.729		(-
Tenor1	21	68.905	3.330	(------*-		
Tenor2	21	69.905	2.071		*--	
Pooled S	ev $=$	2.617		69.0	70.5	72.0
Tukey's'pairwise comparisons						
Family error rate $=0.100$						
Individual error rate $=0.0224$						
Critical value $=3.28$						
Intervals for (column level mean) - (row level mean)						
Bass 1			Bass2	Tenor 1		
Bass2	-2.204					
	0.870					
Tenor 1		0.170	0.699			
		3.456	4.261			
Tenor		0.830	-0.301	-2.873		
		2.456	3.261	0.873		

The only significant difference is that Tenor 1 men are shorter than both Bass 1 and Bass 2 men on average, since those confidence intervals are entirely above 0 .
12.12 Since we suspect that caffeine will increase the rate of finger taps, the one-sided Dunnett critical value is

$$
t_{a-1, \nu, \alpha}=t_{2,27,0.10} \approx 1.625
$$

Then the Dunnett lower confidence bounds, using $s=\sqrt{4.97}=2.23$, are

$$
\begin{aligned}
& \mu_{i}-\mu_{1} \geq \bar{y}_{i}-\bar{y}_{1}-t_{2,27,0.10} s \sqrt{2 / n} \\
& \mu_{2}-\mu_{1} \geq 246.40-244.80-(1.625)(2.23) \sqrt{2 / 10}=-0.021 \\
& \mu_{3}-\mu_{1} \geq 248.30-244.80-(1.625)(2.23) \sqrt{2 / 10}=1.879
\end{aligned}
$$

Only the 200 mg dose is significantly higher than the control, since the confidence interval is entirely above 0 .
12.13

Player	l_{i}	u_{i}
Jordan	$\|3.54-5.82-1.668\|^{-}=-3.948$	$\|3.54-5.82+1.668\|^{+}=0$
Rodman	$\|2.55-5.82-1.668\|^{-}=-4.938$	$\|2.55-5.82+1.668\|^{+}=0$
Kukoc	$\|5.82-3.54-1.668\|^{-}=0$	$\|5.82-3.54+1.668\|^{+}=3.948$
Longley	$\|3.09-5.82-1.668\|^{-}=-4.398$	$\|3.09-5.82+1.668\|^{+}=0$
Harper	$\|2.82-5.82-1.668\|^{-}=-4.668$	$\|2.82-5.82+1.668\|^{+}=0$

Since Kukoc is the only player with $l_{i}=0$, he does appear to have the most assists.
Solutions to Section 12.3
12.18 (a) Since

$$
M S E=\frac{s_{1}^{2}+\ldots+s_{10}^{2}}{10}=10.533
$$

then

$$
\begin{aligned}
S S E & =M S E \times(N-a)=10.533 \times(120-10)=1158.63, \\
S S A & =n \sum \bar{y}_{i}^{2}-N \overline{\bar{y}}^{2} \\
& =12\left[(36.76)^{2}+\ldots+(32.98)^{2}\right]-120 \times 34.454 \\
& =279.932, \text { and } \\
S S T & =S S E+S S A=1158.63+279.932=1438.562 .
\end{aligned}
$$

Then the ANOVA table is given below:

	Analysis of Variance			
Source	SS	d.f.	MS	F
Batch	279.932	9	31.104	2.953
Error	1158.630	110	10.533	
Total	1438.562	119		

(b) The variance components estimates are

$$
\begin{aligned}
\hat{\sigma}_{\text {Error }}^{2} & =M S E=10.533 \text { and } \\
\hat{\sigma}_{\text {Batch }}^{2} & =\frac{M S A-M S E}{n} \\
& =\frac{31.104-10.533}{12}=1.714 .
\end{aligned}
$$

Batch to batch variation accounts for about

$$
\frac{1.714}{1.714+10.533}=14 \%
$$

of the total error variation.
12.19 (a)

$$
\operatorname{Var}(\bar{Y})=\operatorname{Var}\left(\frac{1}{n} \sum_{j=1}^{n} Y_{i j}\right)
$$

$$
\begin{aligned}
& =\operatorname{Var}\left(\frac{1}{n} \sum_{j=1}^{n}\left(\mu+\tau_{i}+\epsilon_{i j}\right)\right) \\
& =\operatorname{Var}\left(\mu+\tau_{i}+\frac{1}{n} \sum_{j=1}^{n} \epsilon_{i j}\right) \\
& =\operatorname{Var}\left(\tau_{i}\right)+\frac{1}{n^{2}} \sum_{j=1}^{n} \operatorname{Var}\left(\epsilon_{i j}\right) \\
& =\sigma_{\text {Batch }}^{2}+\frac{\sigma_{\text {Error }}^{2}}{n}
\end{aligned}
$$

(b) Using

$$
\hat{\sigma}_{Y}=\sqrt{\hat{\sigma}_{\text {Batch }}^{2}+\frac{\hat{\sigma}_{\text {Error }}^{2}}{12}}=\sqrt{1.714+\frac{10.533}{12}}=\sqrt{2.592}=1.610
$$

the three sigma control limits are

$$
34.454 \pm 3(1.610)=[29.624,39.284]
$$

Since all the batch means fall within these limits, the process is under control.
12.20 From the ANOVA table given in Exercise 12.16, the variance components estimates are

$$
\begin{aligned}
\hat{\sigma}_{\text {Error }}^{2} & =M S E=26.53 \text { and } \\
\hat{\sigma}_{\text {Cable }}^{2} & =\frac{M S A-M S E}{n} \\
& =\frac{240.54-26.53}{12}=17.834
\end{aligned}
$$

Cable to cable variation accounts for about

$$
\frac{17.834}{17.834+26.53}=40.2 \%
$$

of the total error variation.

Solutions to Section 12.4

12.21 (a) Since the overall mean is 86 , the effect estimates are

Quantity	Estimate	Quantity	Estimate
τ_{A}	$84-86=-2$	β_{1}	$92-86=6$
τ_{B}	$85-86=-1$	β_{2}	$83-86=-3$
τ_{C}	$89-86=3$	β_{3}	$85-86=-1$
τ_{D}	$86-86=0$	β_{4}	$88-86=2$
		β_{5}	$82-86=-4$

(b)

Analysis of Variance				
Source	SS	d.f.	MS	F
Blend	264	4	66.000	3.504
Method	70	3	23.333	1.239
Error	226	12	18.833	
Total	560	19		

For method, $F<f_{3,12,0.05}=3.49$, so there do not appear to be any significant differences between methods. For blend, $F>f_{4,12,0.05}=3.26$, so there do appear to be significant differences between blends.
(c)

There is possibly a decreasing variance with increasing yield, but this is unclear because there are also less observations at higher yields, so the distribution is less likely to be filled out. From the normal plot of the residuals, the residuals appear to follow the normal distribution.
12.22 (a) The ANOVA output is given below:

General Linear Model

Factor	Type Levels Values					
Player	fixed	6 Becker	Cole	Cordova Mack	Munoz	Puckett
Stadium	fixed	3 Home	Other	Outdoors		

Analysis of Variance for Zone Rat, using Adjusted SS for Tests

Source	DF	Seq SS	Adj SS	Adj MS	F	P
Player	5	0.0148578	0.0148578	0.0029716	23.79	0.000
Stadium	2	0.0016591	0.0016591	0.0008296	6.64	0.015
Error	10	0.0012489	0.0012489	0.0001249		
Total	17	0.0177658				

Least Squares Means for Zone Rat

\quad Stadium	Mean	StDev
Home	0.8007	0.004562
Other	0.8020	0.004562

Outdoors $0.8217 \quad 0.004562$
Tukey 95.0% Simultaneous Confidence Intervals
Response Variable Zone Rat
All Pairwise Comparisons among Levels of Stadium

Stadium $=$ Other subtracted from:

Since the P-value for Stadium is $0.015<\alpha=0.05$, conclude that there are significant differences between the stadiums.
(b) The Tukey confidence intervals are given in the computer output from (a). From whether these confidence intervals contain 0 or not, we can see that Outdoor stadiums are significantly different from both Home Domes and Other Domes, but Home Domes are not significantly different from Other Domes.

23 The estimated contrast is

$$
c=\frac{1}{2}\left(\bar{y}_{1}+\bar{y}_{2}\right)-\bar{y}_{3}=\frac{1}{2}(0.8007+0.802)-0.8217=-0.020
$$

with a standard error of

$$
\text { s.e. }(c)=\sqrt{s^{2} \sum_{i}\left(\frac{c_{i}^{2}}{n_{i}}\right)}=\sqrt{0.000125\left(\frac{(0.5)^{2}+(0.5)^{2}+(-1)^{2}}{6}\right)}=0.0056
$$

Then the test statistic is

$$
t=\frac{-0.020}{0.0056}=-3.578
$$

Since $|t|>t_{10,0.025}=2.228$, conclude that there is a significant difference between domed ; stadiums and outdoor stadiums.

34 (a) The ANOVA output is given below:

Analysis of Variance				
Source	SS	d.f.	MS	F
Park	0.170	1	0.170	14.130
Year	1.064	7	0.152	12.627
Error	0.084	7	0.012	
Total	1.319	15		

Since $F_{\text {Park }}>f_{1,7,0.05}=5.59$, there do appear to be significant differences between new and unchanged parks in their HR/G ratios.
12.28 (a) If batches were ignored as a blocking factor, the SS and d.f. for batches would both be included in the error SS and d.f.
(b) The new ANOVA table would be

Analysis of Variance				
Source	SS	d.f.	MS	F
Position	40.396	7	5.771	3.614
Error	25.549	16	1.597	
Total	65.945	23		

Since $F<f_{7,16,0.01}=4.03$, the positions are not significantly different from one another, when the batches are ignored as a blocking factor.
(c) A nonsignificant result is obtained in (b) because the variance associated with blocks was no longer removed and was included in the error variance. This raised the denominator, reduced the F statistic, and made it more difficult to detect differences among the positions. However, this will not always happen. If the $M S_{\text {Batches }}$ is smaller than $M S E$, including the batch to batch variation in the error term will decrease the overall MSE and have the opposite effect. Also, including the batch d.f. in the error d.f. will make the critical F value smaller, and make it easier to reject H_{0}.
12.29 Since there are 6 blocks, $n=6$ observations per variety. Also, since

$$
s=\sqrt{79.64}=8.924,
$$

then

$$
d=t_{7-1,30,0.10} s \sqrt{\frac{2}{n}}=2.046 \times 8.924 \times \sqrt{\frac{2}{6}}=10.542 .
$$

Using

$$
\begin{aligned}
& l_{i}=\left|\bar{y}_{i}-\max _{j \neq i} \bar{y}_{j}-d\right|^{-}, \\
& u_{i}=\left|\bar{y}_{i}-\max _{j \neq i} \bar{y}_{j}+d\right|^{+},
\end{aligned}
$$

the results are summarized in the table below:

Variety	l_{i}	u_{i}
A	$\|49.6-71.3-10.542\|^{-}=-32.242$	$\|49.6-71.3+10.542\|^{+}=0$
B	$\|71.2-71.3-10.542\|^{-}=-10.642$	$\|71.2-71.3+10.542\|^{+}=10.442$
C	$\|67.6-71.3-10.542\|^{-}=-14.242$	$\|67.6-71.3+10.542\|^{+}=6.842$
D	$\|61.5-71.3-10.542\|^{-}=-20.342$	$\|61.5-71.3+10.542\|^{+}=0.742$
E	$\|71.3-71.2-10.542\|^{-}=-10.442$	$\|71.3-71.2+10.542\|^{+}=10.642$
F	$\|58.1-71.3-10.542\|^{-}=-23.742$	$\|58.1-71.3+10.542\|^{+}=0$
G	$\|61.0-71.3-10.542\|^{-}=-20.842$	$\|61.0-71.3+10.542\|^{+}=0.242$

