(a) c satisfies

$$
P(S>5 c \mid \sigma=5)=0.1
$$

or

$$
P\left(\chi_{19}^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}>\frac{19 \times(5 c)^{2}}{5^{2}}\right)=0.1
$$

or

$$
P\left(\chi_{19}^{2}=19 c^{2}\right)=0.1
$$

or

$$
19 c^{2}=\chi_{19,0.1}^{2}=27.203,
$$

so

$$
c=\sqrt{\frac{27.203}{19}}=1.197 .
$$

(b) Since $s=7.5>5 c=5.983$, the engineer would conclude that $\sigma>5$.

Solutions for Section 5.3

$5.24 t_{5,0.05}=2.015, t_{10,0.10}=1.372, t_{10,0.90}=-1.372$, and $t_{20,0.01}=2.528$.
5.25 (a) $a=1.812, b=-2.764, c=1.372$, and $d=2.228$.
(b) $a=t_{10,0.05}, b=t_{10,0.99}=-t_{10,0.01}, c=t_{10,0.10}$, and $d=t_{10,0.025}$.
5.26

$$
\begin{gathered}
P\left(-t_{8,10} \leq T_{8} \leq t_{8,10}\right)=0.80 \\
P\left(-t_{8,05} \leq T_{8} \leq t_{8,01}\right)=0.94 \\
P\left(t_{8,05} \leq T_{8} \leq t_{8,01}\right)=0.04, \\
P\left(T_{8}>-t_{8,05}\right)=0.95
\end{gathered}
$$

5.27 (a) 100 random samples were generated.
(b) From the simulation, $t_{4,0.25}=-0.656, t_{4,0.5}=0.081$, and $t_{4,0.90}=2.065$. The ernot values are $t_{4,0.25}=-0.741, t_{4,0.5}=0$, and $t_{4,0.90}=1.533$.
5.28 (a) 100 random samples were generated.
(b) From the simulation, $t_{4,0.25}=-0.554, t_{4,0.5}=0.164$, and $t_{4,0.90}=1.809$. The enat values are $t_{4,0.25}=-0.741, t_{4,0.5}=0$, and $t_{4,0.90}=1.533$.

Solutions for Section 5.4

$5.29 f_{10,10,0.025}=3.72, f_{10,10,0.975}=1 / 3.72=0.27, f_{5,10,0.10}=2.52, f_{5,10,0.90}=1 / f_{10,5,0.5 \mathrm{c}}=\mathbf{0 . 3 2}$, and $f_{10,5,0.90}=1 / 2.52=0.40$.
5.30 (a) $a=2.85, b=0.176, c=2.24, d=0.24$, and $e=3.51$.
(b) $a=f_{8,12,0.05}, b=f_{8,12,0.99}=1 / f_{12,8,0.01}, c=f_{8,12,0.10}, d=f_{8,12,0.975}=1 / f_{12,8 . c .065 .}$ and $e=f_{8,12,0.025}$.
5.31

$$
\begin{aligned}
\alpha & =P\left(F_{\nu_{1}, \nu_{2}} \leq f_{\nu_{1}, \nu_{2}, 1-\alpha}\right) \\
& =P\left(\frac{1}{F_{\nu_{2}, \nu_{1}}} \leq f_{\nu_{1}, \nu_{2}, 1-\alpha}\right) \\
& =P\left(F_{\nu_{2}, \nu_{1}} \geq \frac{1}{f_{\nu_{1}, \nu_{2}, 1-\alpha}}\right)
\end{aligned}
$$

Hence, $f_{\nu_{2}, \nu_{1}, \alpha}=1 / f_{\nu_{1}, \nu_{2}, 1-\alpha}$.
5.32

$$
\begin{aligned}
1-\alpha & =P\left(-t_{\nu, \alpha / 2} \leq T_{\nu} \leq t_{\nu, \alpha / 2}\right) \\
& =P\left(T_{\nu}^{2} \leq t_{\nu, \alpha / 2}^{2}\right) \\
& =P\left(F_{1, \nu} \leq t_{\nu, \alpha / 2}^{2}\right)
\end{aligned}
$$

Hence, $f_{1, \nu, \alpha}=t_{\nu, \alpha / 2}^{2}$.
5.33

$$
\begin{aligned}
P\left(\frac{S_{1}^{2}}{S_{2}^{2}}>4\right) & =P\left(\frac{\frac{\left(n_{1}-1\right) S_{1}^{2}}{\sigma^{2}}}{\frac{\left(n_{2}-1\right) S_{2}^{2}}{\sigma^{2}}}>4\left[\frac{n_{1}-1}{n_{2}-1}\right]\right) \\
& =P\left(F_{n_{1}-1, n_{2}-1}>4\left[\frac{n_{1}-1}{n_{2}-1}\right]\right)
\end{aligned}
$$

For $\left(n_{1}=7, n_{2}=5\right)$,

$$
P\left(\frac{S_{1}^{2}}{S_{2}^{2}}>4\right)=P\left(F_{6,4}>6\right) \approx 0.05
$$

For ($n_{1}=13, n_{2}=7$),

$$
P\left(\frac{S_{1}^{2}}{S_{2}^{2}}>4\right)=P\left(F_{12,6}>8\right) \approx 0.01
$$

For ($n_{1}=9, n_{2}=16$),

$$
P\left(\frac{S_{1}^{2}}{S_{2}^{2}}>4\right)=P\left(F_{8,15}>2.133\right) \approx 0.10
$$

Solutions for Section 5.5

5.34 Since the r th order statistic in a random sample of size n from a $U[0,1]$ distribution has beta distribution with parameters r and $n-r+1, X_{\min } \sim \operatorname{Beta}(1,9), X_{\max } \sim \operatorname{Beta}(\mathbf{9}, \mathbf{1}$ and $\tilde{X}=X_{(0.5)} \sim \operatorname{Beta}(5,5)$.
5.35 From equation (5.26)

$$
f_{(1)}(x)=\frac{1}{B(1,9)}\left(1-e^{-0.10 x}\right)^{0}\left(e^{-0.10 x}\right)^{8}\left(0.10 e^{-0.10 x}\right)
$$

Chapter 6 Solutions

Solutions for Section 6.1

6.1 (a) 3 is a parameter, 0 is a statistic.
(b) 63 is a statistic.
(c) 48% is a statistic, 52% is a parameter.
6.2 (a)

$$
\begin{aligned}
& \operatorname{Bias}\left(\hat{\mu_{1}}\right)=E\left(\hat{\mu_{1}}\right)-\mu=E\left(X_{1}\right)-\mu=\mu-\mu=0 \\
& \operatorname{Bias}\left(\hat{\mu_{2}}\right)=E\left(\frac{X_{2}+X_{3}}{2}\right)-\mu=\frac{E\left(X_{2}\right)+E\left(X_{3}\right)}{2}-\mu=\frac{2 \mu}{2}-\mu=0 \\
& \operatorname{Bias}\left(\hat{\mu_{3}}\right)=E\left(0.1 X_{1}+0.2 X_{2}+0.3 X_{3}+0.4 X_{4}\right)-\mu=(0.1+0.2+0.3+0.4) \mu-\mu=0 \\
& \operatorname{Bias}\left(\hat{\mu_{4}}\right)=E(\bar{X})-\mu=\mu-\mu=0
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\mu_{1}}\right)=\sigma^{2} \\
& \operatorname{Var}\left(\hat{\mu_{2}}\right)=0.5^{2} \sigma^{2}+0.5^{2} \sigma^{2}=0.5 \sigma^{2} \\
& \operatorname{Var}\left(\hat{\mu_{3}}\right)=0.1^{2} \sigma^{2}+0.2^{2} \sigma^{2}+0.3 \sigma^{2}+0.4^{2} \sigma^{2}=0.3 \sigma^{2} \\
& \operatorname{Var}\left(\hat{\mu_{4}}\right)=\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{4}=0.25 \sigma^{2}
\end{aligned}
$$

Therefore $\hat{\mu_{4}}=\bar{X}$ has the smallest variance.
(c)

$$
\operatorname{Bias}(\hat{\mu})=E\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)-\mu=\left(a_{1}+\cdots+a_{n}\right) \mu-\mu=0
$$

So $\hat{\mu}$ is unbiased when $\sum a_{i}=1$

$$
\operatorname{Var}(\hat{\mu})=\operatorname{Var}\left(a_{1} X_{1}+\cdots+a_{n} X_{n}\right)=\left(a_{1}^{2}+\cdots+a_{n}^{2}\right) \sigma^{2}=\left(\sum a_{i}^{2}\right) \sigma^{2}
$$

$\operatorname{Var}(\hat{\mu})$ is minimum when $a_{1}=\cdots=a_{n}=1 / n$ because subject to $\sum a_{i}=1, \sum a_{i}^{2}$ is minimized by choosing $a_{1}=\cdots=a_{n}=1 / n$.
6.3 (a)

$$
\operatorname{Bias}\left(X_{\max }\right)=E\left(X_{\max }\right)-\theta=\frac{n}{n+1} \theta-\theta=\frac{-1}{n+1} \theta .
$$

(b)

$$
\operatorname{Bias}\left(X_{\max }+X_{\min }\right)=E\left(X_{\max }+X_{\min }\right)-\theta=\left(\frac{1}{n+1}+\frac{n}{n+1}\right) \theta-\theta=0 .
$$

Since $X_{\max }+X_{\min }$ is an unbiased estimator of $\theta,\left(X_{\max }+X_{\min }\right) / 2$ is an unbiased estimator of $\theta / 2$.

$$
\operatorname{Bias}\left(\bar{X}^{2}\right)=E\left(\bar{X}^{2}\right)-\mu^{2}=\operatorname{Var}(\bar{X})+\mu^{2}-\mu^{2}=\frac{\sigma^{2}}{n}
$$

(a)

$$
\begin{aligned}
E\left(\hat{p}_{1}\right) & =E(\hat{p})=p \\
E\left(\hat{p}_{2}\right) & =E(1 / 2)=1 / 2 \\
\operatorname{Bias}\left(\hat{p}_{1}\right) & =E(\hat{p})-p=0 \\
\operatorname{Bias}\left(\hat{p}_{2}\right) & =E(1 / 2)-p=1 / 2-p
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{p}_{1}\right)=\operatorname{Var}(\hat{p})=\frac{p(1-p)}{n} \\
& \operatorname{Var}\left(\hat{p}_{2}\right)=\operatorname{Var}(1 / 2)=0
\end{aligned}
$$

\hat{p}_{2} has the lower variance.
(c)

$$
\begin{aligned}
& \operatorname{MSE}\left(\hat{p}_{1}\right)=\frac{p(1-p)}{n}+0=\frac{p(1-p)}{n} \\
& \operatorname{MSE}\left(\hat{p}_{2}\right)=0+(1 / 2-p)^{2}=(1 / 2-p)^{2}
\end{aligned}
$$

Scatterplot of MSE vs. p

\hat{p}_{1} is generally a flatter curve, meaning there is less downside risk. However, \hat{p}_{2} has a lower MSE for p near 0.5 , so \hat{p}_{1} is not always a better estimator.
6.6 (a)

$$
\operatorname{Bias}(\hat{\theta})=w_{1} E\left(\hat{\theta}_{1}\right)+w_{2} E\left(\hat{\theta}_{2}\right)-\theta=\left(w_{1}+w_{2}-1\right) \theta=0 .
$$

Therefore $\hat{\theta}$ is unbiased if and only if $w_{1}+w_{2}=1$.
(b)

$$
\begin{aligned}
\operatorname{Var}(\hat{\theta}) & =\operatorname{Var}\left(w_{1} \hat{\theta}_{1}+w_{2} \hat{\theta}_{2}\right) \\
& =w_{1}^{2} \sigma_{1}^{2}+w_{2}^{2} \sigma_{2}^{2} \\
& =w^{2} \sigma_{1}^{2}+(1-w)^{2} \sigma_{2}^{2}
\end{aligned}
$$

(c) Minimize $\operatorname{Var}(\hat{\theta})=W=w^{2} \sigma_{1}^{2}+(1-w)^{2} \sigma_{2}^{2}$:

$$
\begin{aligned}
\frac{\partial W}{\partial w} & =2 w \sigma_{1}^{2}-2(1-w) \sigma_{2}^{2} \\
& =w\left(2 \sigma_{1}^{2}+2 \sigma_{2}^{2}\right)-2 \sigma_{2}^{2}=0
\end{aligned}
$$

Therefore

$$
w=\frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \text { and } 1-w=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}
$$

This says that $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ should be weighted inversely in proportion to their variances. Note :

$$
\frac{\partial^{2} W}{\partial w^{2}}=2 \sigma_{1}^{2}+2 \sigma_{2}^{2}>0
$$

so that this value of w is a local minimum.
6.7

$$
\begin{gathered}
\bar{x}=(26.3+25.9+\ldots+26.2) / 10=26.15 \\
s^{2}=\left[(26.3-26.15)^{2}+(25.9-26.15)^{2}+\ldots+(26.2-26.15)^{2}\right] / 9=0.2317
\end{gathered}
$$

Then

$$
\mathrm{SEM}=\sqrt{\frac{0.2317}{10}}=0.15
$$

6.8

$$
S E(\hat{p})=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}=\sqrt{\frac{(0.43)(0.57)}{611}}=0.02 .
$$

6.9 For the gamma distribution we have

$$
\mu=\frac{\theta_{2}}{\theta_{1}} \text { and } \sigma^{2}=\frac{\theta_{2}}{\theta_{1}^{2}} \text {. }
$$

Equate

$$
\hat{\mu}=\hat{\mu}_{1}=\frac{\hat{\theta}_{2}}{\hat{\theta}_{1}} \text { and } \hat{\sigma}^{2}=\hat{\mu}_{2}-\hat{\mu}_{1}^{2}=\frac{\hat{\theta}_{2}}{\hat{\theta}_{1}^{2}}
$$

where $\hat{\mu}_{1}$ and $\hat{\mu}_{2}$ are the first two sample moments. Solving these two equations yields

$$
\hat{\theta}_{1}=\frac{\hat{\mu}}{\hat{\sigma}^{2}} \text { and } \hat{\theta}_{2}=\frac{\hat{\mu}^{2}}{\hat{\sigma}^{2}}
$$

6.10 For the beta distribution we have

$$
\mu=\frac{\theta_{1}}{\theta_{1}+\theta_{2}} \text { and } \sigma^{2}=\frac{\theta_{1} \theta_{2}}{\left(\theta_{1}+\theta_{2}\right)^{2}\left(\theta_{1}+\theta_{2}+1\right)} .
$$

Equate

$$
\hat{\mu}=\hat{\mu}_{1}=\frac{\hat{\theta}_{1}}{\hat{\theta}_{1}+\hat{\theta}_{2}} \text { and } \hat{\sigma}^{2}=\hat{\mu}_{2}-\hat{\mu}_{1}^{2}=\frac{\hat{\theta}_{1} \hat{\theta}_{2}}{\left(\hat{\theta}_{1}+\hat{\theta}_{2}\right)^{2}\left(\hat{\theta}_{1}+\hat{\theta}_{2}+1\right)} .
$$

where $\hat{\mu}_{1}$ and $\hat{\mu}_{2}$ are the first two sample moments. Solving the first equarican $y^{-3,4}$

$$
\hat{\theta}_{1}(1-\hat{\mu})=\hat{\theta}_{2} \hat{\mu}
$$

or

$$
\hat{\theta}_{2}=\hat{\theta}_{1} \frac{1-\hat{\mu}}{\hat{\mu}}=c \hat{\theta}_{1},
$$

where

$$
c=\frac{1-\hat{\mu}}{\hat{\mu}}
$$

Solving the second equation yields

$$
\hat{\sigma}^{2}=\frac{c \hat{\theta}_{1}^{2}}{\hat{\theta}_{1}^{2}(1+c)^{2}\left[(1+c) \hat{\theta}_{1}+1\right]}
$$

or

$$
\hat{\theta}_{1}=\frac{c-(1+c)^{2} \hat{\sigma}^{2}}{(1+c)^{3} \hat{\sigma}^{2}} .
$$

Solutions for Section 6.2

6.11 (a) Since $P(-1.645 \leq Z \leq+1.645)=.90$, a $90 \% \mathrm{CI}$ for μ is $\left[\bar{X}-1.645 \frac{\sigma}{\sqrt{n}}, \bar{X}+1.65 \frac{\pi}{7}\right]$
(b) $90 \% \mathrm{CI}=\left[30-1.645 \times \frac{10}{\sqrt{100}}, 30+1.645 \times \frac{10}{\sqrt{100}}\right]=[28.355,31.645]$.
(c) The probability that μ is included in this CI is either 0 or 1 (not .90).
6.12 (a) From a simulation, all 25 samples contained the true mean 50 , and 6 of the samples contained the wrong mean 53.
(b) The width of the 95% CI decreases when sample size increases from 20 to 100 . You woud expect the same number of intervals to contain the true mean 50 , but fewer intervals to contain the wrong mean 53.
(c) If μ were unknown, you would not be able to tell if a CI contained μ.
6.13 (a) You would expect $100 \times 0.95=95$ intervals to contain the true mean 70 .
(b) $\mathrm{X} \sim \operatorname{Bin}(100,0.95)$.
6.14 (a) For 80% confidence, $z_{\alpha / 2}=z_{.10}=1.282$. Then the $80 \% \mathrm{CI}$ is

$$
16.3 \pm 1.282 \times \frac{6}{\sqrt{25}}=[14.76,17.84] .
$$

For 90% confidence, $z_{\alpha / 2}=z_{.05}=1.645$. Then the $90 \% \mathrm{CI}$ is

$$
16.3 \pm 1.645 \times \frac{6}{\sqrt{25}}=[14.33,18.27]
$$

For 99% confidence, $z_{\alpha / 2}=z_{.005}=2.576$. Then the $99 \% \mathrm{CI}$ is

$$
16.3 \pm 2.576 \times \frac{6}{\sqrt{25}}=[13.21,19.39]
$$

(b) If n were increased to 100 , the width of the CI would decrease by a factor of $\sqrt{100 / 25}=2$.
6.15 (a) A 95% CI for $\mu=110.5 \pm 1.96 \times \frac{3}{\sqrt{10}}=[108.64,112.36]$.

Since this interval falls completely within the specification limits of [107.5,112.5], we can conclude that the specifications are met.
(b) Only the lower specific limit is critical, i.e., we want $\mu \geq 107.5$ volts. Calculate the lower one-sided 95% confidence bound :

$$
\mu \geq \bar{x}-z_{\alpha} \frac{\sigma}{\sqrt{n}}=100.5-1.645 \times \frac{3}{\sqrt{10}}=108.94
$$

Since this exceeds 107.5, the lower specification limit is met.
(c) Similarly if we want $\mu \leq 112.5$, calculate the upper one-sided 95% confidence bound :

$$
\mu \leq \bar{x}+z_{\alpha} \frac{\sigma}{\sqrt{n}}=110.5+1.645 \times \frac{3}{\sqrt{10}}=112.06
$$

Since this is smaller than 112.5, the upper specification limit is met.
6.16

$$
\text { Conf. Level: } P\left(X_{\min } \leq \tilde{\mu} \leq X_{\max }\right)=1-\left(\frac{1}{2}\right)^{n-1}
$$

For $n=10$,
Conf. Level: $P\left(X_{\min } \leq \tilde{\mu} \leq X_{\max }\right)=1-\left(\frac{1}{2}\right)^{10-1}=0.998$.

Solutions for Section 6.3

