Ma 551 - Advanced Probability

Problem Set \#1 - Due October 2, 2007
Prof. Sawyer - Washington University

Text references are to Kai Lai Chung, A Course in Probability Theory, 3rd edition, Academic Press, 2001.

1. Let $\Omega=\{0,1,2, \ldots\}$ be the nonnegative integers and let \mathcal{A} be the set of all finite subsets of Ω. Show that
(i) \mathcal{A} is a semi-ring of subsets of Ω.
(ii) $\mathcal{B}(\mathcal{A})=2^{\Omega}$, where $\mathcal{B}(\mathcal{A})$ is the smallest σ-algebra of subsets of Ω that contains \mathcal{A} and 2^{Ω} means the set of all subsets of Ω.
(iii) There does not exist a probability measure (Ω, \mathcal{F}, P) for $\mathcal{F}=\mathcal{B}(\mathcal{A})$ such that $\mu(\{n\})=\alpha$ has the same value for all $n \in \Omega$.
2. Let $X \geq 0$ be a nonnegative random variable (r.v.) on a probability space (Ω, \mathcal{F}, P) and assume that $r>0$. Show that

$$
E\left(X^{r}\right)=\int_{0}^{\infty} r y^{r-1} P(X \geq y) d y
$$

Conclude that $E(X)<\infty$ if and only if

$$
\int_{0}^{\infty} P(X \geq y) d y<\infty
$$

(Hint: Write $E\left(X^{r}\right)=E\left(\int_{0}^{X^{r}} d u\right)$, express in terms of a product measure $\mu_{2}(d \omega d y)$ on $\Omega \times[0, \infty)$, and use Fubini's Theorem.)
3. Let X be a uniformly distributed r.v. on a probability space (Ω, \mathcal{F}, P). (That is, $P(X \leq x)=x$ for $0 \leq x \leq 1$.) Let $Y=r \log (1 / X)$ for some $r>0$. Prove that Y has a density function $f_{Y}(y)$ with respect to Lebesgue measure and find $f_{Y}(y)$. (Hint: This holds if and only if $E(\phi(Y))=\int_{0}^{\infty} \phi(y) f_{Y}(y) d y$ for all bounded Borel functions $\phi(x) \geq 0$.)
4. Let $\left\{X_{n}\right\}$ be an independent and identically distributed sequence of random variables on a probability space (Ω, \mathcal{F}, P) such that $X_{i} \geq 0$ and $E\left(X_{i}\right)=\infty$. Use
the strong law of large numbers for independent random variables with $E\left(X^{4}\right)<\infty$ to prove that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+X_{2}+\cdots+X_{n}}{n}=\infty \quad \text { a.s. }
$$

(Hint: Consider $X_{i}^{C}=\min \left\{X_{i}, C\right\}$ for $C>0$.)
5. Let X and Y be independent and identically distributed random variables. Find the limit

$$
\lim _{n \rightarrow \infty} \operatorname{Exp}\left(e^{-n(X-Y)^{2}}\right)
$$

(Hint: Express the expectation in terms of the joint distribution function of X and Y. If you take a limit inside an integral, explain why it is valid. Be careful!)
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ be two sets of independent random variables on a probability space (Ω, \mathcal{F}, P). Assume that the X_{i} have a density $f(x)=$ $f_{X}(x)$ on R^{1} and the Y_{j} have density $g(y)=f_{Y}(y)$, respectively. That is,

$$
\begin{array}{ll}
P\left(X_{i} \leq x\right)=F_{X}(x)=\int_{0}^{x} f(u) d u, & \text { all } i, \text { all } x \\
P\left(Y_{j} \leq y\right)=F_{Y}(y)=\int_{0}^{y} g(v) d v, & \text { all } j, \text { all } y
\end{array}
$$

Assume $g(y)>0$ for all $y \in R^{1}$ and define

$$
L_{R}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\frac{f\left(y_{1}\right) f\left(y_{2}\right) \ldots f\left(y_{n}\right)}{g\left(y_{1}\right) g\left(y_{2}\right) \ldots g\left(y_{n}\right)}
$$

Prove that

$$
E\left(\phi\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right) L_{R}\left(Y_{1}, \ldots, Y_{n}\right)\right)=E\left(\phi\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)
$$

for all nonnegative bounded continuous functions $\phi\left(y_{1}, \ldots, y_{n}\right)$ on R^{n}. (Hint: Use the fact that X_{i} and Y_{j} are independent and write out both sides as integrals on R^{n}.)

