Ma 551 - Advanced Probability

Problem Set \#2 - Due October 30, 2007
Prof. Sawyer - Washington University

Text references are to Kai Lai Chung, A Course in Probability Theory, 3rd edition, Academic Press, 2001.

1. Let X_{1}, X_{2}, \ldots be i.d.i.r.v. (identically-distributed independent random variables) such that $E\left(X_{1}^{2}\right)<\infty$ and $E\left(X_{1}\right)=0$. Prove that

$$
\lim _{n \rightarrow \infty} X_{n} / \sqrt{n}=0 \quad \text { a.s. }
$$

where "a.s." stands for "almost surely". (Hint: Use the Borel-Cantelli Lemma somehow.)
2. Let $X(\omega), Y(\omega)$ be random variables on a probability space (Ω, \mathcal{F}, P) satisfying

$$
P(X \leq \lambda, Y \leq \mu)=\int_{-\infty}^{\lambda} \int_{-\infty}^{\mu} f(x, y) d x d y
$$

for all $\lambda, \mu \in R$ for some measurable function $f(x, y) \geq 0$. Prove that

$$
\begin{equation*}
E(\phi(Y) \mid \mathcal{B}(X))(\omega)=\frac{\int_{-\infty}^{\infty} \phi(z) f(X(\omega), z) d z}{\int_{-\infty}^{\infty} f(X(\omega), z) d z} \quad \text { a.s. } \tag{1}
\end{equation*}
$$

for any bounded Borel function $\phi(y) \geq 0$. (Hint: Find $f_{X}(x)$ such that $P(X \leq \lambda)=$ $\int_{-\infty}^{\lambda} f_{X}(x) d x$ and use the definition of conditional expectation. Use the fact that a random variable $Z(\omega)$ is $\mathcal{B}(X)$-measurable if and only if $Z(\omega)=g(X(\omega))$ for some Borel function $g(y)$.)

In the following problems, let $p_{i j}=p(i, j)$ be an $N \times N$ matrix with

$$
\begin{equation*}
\sum_{k=1}^{N} p_{i k}=1, \quad \text { all } i, \quad \text { and } p_{i j}>0 \quad \text { all } i, j \tag{2}
\end{equation*}
$$

3. (i) Choose $\nu_{i}>0$ with $\sum_{k=1}^{N} \nu_{k}=1$ and let $p(i, j)$ be as above. Prove that there exists a probability space (Ω, \mathcal{F}, P) and random variables $X_{0}(\omega), X_{1}(\omega), \ldots$ on (Ω, \mathcal{F}) such that

$$
\begin{equation*}
P\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots X_{k}=i_{k}\right)=\nu_{i_{0}} p\left(i_{0}, i_{1}\right) p\left(i_{1}, i_{2}\right) \ldots p\left(i_{k-1}, i_{k}\right) \tag{3}
\end{equation*}
$$

for all k and integers i_{a} such that $1 \leq i_{a} \leq N$ for $0 \leq a \leq N$.
(ii) Where did your proof of (i) use the fact that $\sum_{i=1}^{N} \nu_{i}=1$? Could you get a stronger result by dropping the condition $\sum_{i=1}^{N} \nu_{i}=1$?
4. (i) Show that the random variables in the last problem satisfy the conditional probability relation

$$
\begin{equation*}
P\left(X_{n+1}=j \mid \mathcal{B}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)(\omega)=p\left(X_{n}(\omega), j\right) \quad \text { a.s. } \tag{4}
\end{equation*}
$$

A set of random variables $\left\{X_{n}\right\}$ that satisfies a set of relations like (4), where the right-hand side of (4) depends only on $X_{n}(\omega)$, is called a Markov process, after the Russian mathematician Andrei Markov (1856-1922).
(ii) Show more generally that

$$
\begin{equation*}
P\left(X_{n+m}=j \mid \mathcal{B}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right)(\omega)=p^{m}\left(X_{n}(\omega), j\right) \quad \text { a.s. } \tag{5}
\end{equation*}
$$

for all $m \geq 1$, where $p^{m}(i, j)$ is the $m^{\text {th }}$ matrix power of $p(i, j)$ (i.e.,

$$
\sum_{j=1}^{N} p(i, j) p^{m-1}(j, k)=p^{m}(i, k)
$$

etc. Hint: Write (3) for $X_{0}, X_{1}, \ldots, X_{n}, X_{n+1}, \ldots, X_{n+m}$ and sum the indices between n and $n+m$.)

Definitions: For $p(i, j)$ as in (2), one can then show that there exists a unique vector $\nu \in R^{N}$ such that

$$
\begin{equation*}
\sum_{i=1}^{N} \nu_{i} p_{i j}=\nu_{j} \quad \text { for } 1 \leq j \leq N, \quad \nu_{j}>0, \quad \sum_{k=1}^{N} \nu_{k}=1 \tag{6}
\end{equation*}
$$

Any vector ν satisfying the first equation in (6) is called a stationary vector for $p(i, j)$. One can also show that there exist constants C, λ such that $0<\lambda<1$ and

$$
\begin{equation*}
\left|p^{m}(i, j)-\nu_{j}\right| \leq C \lambda^{m}, \quad \text { for all } i, j, m \geq 1 \tag{7}
\end{equation*}
$$

where ν is the unique stationary vector in (6). In general, a sequence of random variables X_{1}, X_{2}, \ldots is called strongly mixing if there exist constants $\rho_{m}>0$ satisfying $\sum_{m=0}^{\infty} \rho_{m}<\infty$ and

$$
\begin{equation*}
|P(A \cap B)-P(A) P(B)| \leq \rho_{m} P(A) P(B) \tag{8}
\end{equation*}
$$

whenever $A \in \mathcal{B}\left(X_{0}, X_{1}, \ldots, X_{n}\right)$ and $B \in \mathcal{B}\left(X_{n+m}, X_{n+m+1}, \ldots\right)$ for $n, m \geq 1$. Without loss of generality in (8), we can assume that $\Omega=R^{\infty}, \mathcal{F}=\mathcal{B}\left(R^{\infty}\right)$, and $X_{i}(\omega)=\omega_{i+1}$ for $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \ldots\right)$. In that case, the unilateral shift transformation $\theta(\omega)=\left(\omega_{2}, \omega_{3}, \ldots\right)$ on R^{∞} is also called strongly mixing. (Recall that then $X_{n}(\omega)=X_{0}\left(\theta^{n}(\omega)\right)$ for $n \geq 1$.)

Ma 551- Advanced Probability- October 30, 2007.
5. (i) For $p(i, j)$ as above and ν as in (6), prove that the random variables X_{0}, X_{1}, \ldots are strictly stationary. That is,

$$
\begin{equation*}
P\left(X_{0}=i_{0}, X_{1}=i_{1}, \ldots, X_{n}=i_{n}\right)=P\left(X_{m}=i_{0}, X_{m+1}=i_{1}, \ldots, X_{m+n}=i_{n}\right) \tag{9}
\end{equation*}
$$

for all integers $m, n \geq 0$ and $1 \leq i_{a} \leq N$.
(ii) Use part (i) to show that

$$
\lim _{n \rightarrow \infty} \frac{f\left(X_{1}(\omega)\right)+f\left(X_{2}(\omega)\right)+\cdots+f\left(X_{n}(\omega)\right)}{n}=Y(\omega) \quad \text { converges a.s. }
$$

for any function $f(j)$ on $S=\{1,2, \ldots, N\}$.
6. Show that the random variables $\left\{X_{i}\right\}$ in Problem 5 are strongly mixing; i.e., satisfy (8). (Hint: Use (7).) Use this or otherwise to prove that the shift operator $\theta(\omega)$ is ergodic. Finally, prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f\left(X_{1}(\omega)\right)+f\left(X_{2}(\omega)\right)+\cdots+f\left(X_{n}(\omega)\right)}{n}=\sum_{i=1}^{N} \nu_{i} f(i) \quad \text { a.s. } \tag{10}
\end{equation*}
$$

for any function $f(x)$ on $S=\{1,2, \ldots, N\}$. (Hints: Recall that X_{1}, X_{2}, \ldots on a probability space (Ω, \mathcal{F}, P) is ergodic if $A \in \mathcal{F}, \theta^{-1}(A)=A$ for the unilateral shift $\theta(\omega)$ implies $P(A)=0$ or $P(A)=1$. Consider that, while the Kolmogorov Zero-One Law does not apply to X_{i} since the X_{i} are in general not independent, its proof might generalize. Connect the conclusion to ergodicity.)

