
Ma551 — Advanced Probability
Problem Set #2 — Due October 30, 2007

Prof. Sawyer — Washington University

Text references are to Kai Lai Chung, A Course in Probability Theory , 3rd edition,
Academic Press, 2001.

1. Let X1, X2, . . . be i.d.i.r.v. (identically-distributed independent random vari-
ables) such that E(X2

1 ) < ∞ and E(X1) = 0. Prove that

lim
n→∞

Xn/
√

n = 0 a.s.

where “a.s.” stands for “almost surely”. (Hint : Use the Borel-Cantelli Lemma
somehow.)

2. Let X(ω), Y (ω) be random variables on a probability space (Ω,F , P ) satisfying

P (X ≤ λ, Y ≤ µ) =
∫ λ

−∞

∫ µ

−∞
f(x, y)dxdy

for all λ, µ ∈ R for some measurable function f(x, y) ≥ 0. Prove that

E
(
φ(Y ) | B(X)

)
(ω) =

∫∞
−∞ φ(z)f

(
X(ω), z

)
dz∫∞

−∞ f
(
X(ω), z

)
dz

a.s. (1)

for any bounded Borel function φ(y) ≥ 0. (Hint : Find fX(x) such that P (X ≤ λ) =∫ λ

−∞ fX(x)dx and use the definition of conditional expectation. Use the fact that a
random variable Z(ω) is B(X)-measurable if and only if Z(ω) = g

(
X(ω)

)
for some

Borel function g(y).)

In the following problems, let pij = p(i, j) be an N ×N matrix with

N∑

k=1

pik = 1, all i, and pij > 0 all i,j (2)

3. (i) Choose νi > 0 with
∑N

k=1 νk = 1 and let p(i, j) be as above. Prove that
there exists a probability space (Ω,F , P ) and random variables X0(ω), X1(ω), . . .
on (Ω,F) such that

P (X0 = i0, X1 = i1, . . . Xk = ik) = νi0p(i0, i1)p(i1, i2) . . . p(ik−1, ik) (3)
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for all k and integers ia such that 1 ≤ ia ≤ N for 0 ≤ a ≤ N .

(ii) Where did your proof of (i) use the fact that
∑N

i=1 νi = 1? Could you get a
stronger result by dropping the condition

∑N
i=1 νi = 1?

4. (i) Show that the random variables in the last problem satisfy the conditional
probability relation

P
(
Xn+1 = j

∣∣ B(X1, X2, . . . , Xn)
)
(ω) = p(Xn(ω), j) a.s. (4)

A set of random variables {Xn } that satisfies a set of relations like (4), where the
right-hand side of (4) depends only on Xn(ω), is called a Markov process, after the
Russian mathematician Andrei Markov (1856-1922).

(ii) Show more generally that

P (Xn+m = j | B(X1, X2, . . . , Xn))(ω) = pm(Xn(ω), j) a.s. (5)

for all m ≥ 1, where pm(i, j) is the mth matrix power of p(i, j) (i.e.,
N∑

j=1

p(i, j)pm−1(j, k) = pm(i, k)

etc. Hint : Write (3) for X0, X1, . . . , Xn, Xn+1, . . . , Xn+m and sum the indices
between n and n + m.)

Definitions: For p(i, j) as in (2), one can then show that there exists a unique
vector ν ∈ RN such that

N∑

i=1

νipij = νj for 1 ≤ j ≤ N, νj > 0,

N∑

k=1

νk = 1 (6)

Any vector ν satisfying the first equation in (6) is called a stationary vector for
p(i, j). One can also show that there exist constants C, λ such that 0 < λ < 1 and

|pm(i, j)− νj | ≤ Cλm, for all i, j, m ≥ 1 (7)

where ν is the unique stationary vector in (6). In general, a sequence of random vari-
ables X1, X2, . . . is called strongly mixing if there exist constants ρm > 0 satisfying∑∞

m=0 ρm < ∞ and∣∣P (A ∩B)− P (A)P (B)
∣∣ ≤ ρmP (A)P (B) (8)

whenever A ∈ B(X0, X1, . . . , Xn) and B ∈ B(Xn+m, Xn+m+1, . . .) for n,m ≥ 1.
Without loss of generality in (8), we can assume that Ω = R∞, F = B(R∞),
and Xi(ω) = ωi+1 for ω = (ω1, ω2, . . . , ωn, . . .). In that case, the unilateral shift
transformation θ(ω) = (ω2, ω3, . . .) on R∞ is also called strongly mixing. (Recall
that then Xn(ω) = X0

(
θn(ω)

)
for n ≥ 1.)
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5. (i) For p(i, j) as above and ν as in (6), prove that the random variables X0, X1, . . .
are strictly stationary . That is,

P (X0 = i0, X1 = i1, . . . , Xn = in) = P (Xm = i0, Xm+1 = i1, . . . , Xm+n = in)
(9)

for all integers m,n ≥ 0 and 1 ≤ ia ≤ N .

(ii) Use part (i) to show that

lim
n→∞

f
(
X1(ω)

)
+ f

(
X2(ω)

)
+ · · ·+ f

(
Xn(ω)

)

n
= Y (ω) converges a.s.

for any function f(j) on S = { 1, 2, . . . , N }.

6. Show that the random variables {Xi } in Problem 5 are strongly mixing; i.e.,
satisfy (8). (Hint : Use (7). ) Use this or otherwise to prove that the shift opera-
tor θ(ω) is ergodic. Finally, prove that

lim
n→∞

f
(
X1(ω)

)
+ f

(
X2(ω)

)
+ · · ·+ f

(
Xn(ω)

)

n
=

N∑

i=1

νif(i) a.s. (10)

for any function f(x) on S = { 1, 2, . . . , N }. (Hints: Recall that X1, X2, . . . on
a probability space (Ω,F , P ) is ergodic if A ∈ F , θ−1(A) = A for the unilateral
shift θ(ω) implies P (A) = 0 or P (A) = 1. Consider that, while the Kolmogorov
Zero-One Law does not apply to Xi since the Xi are in general not independent,
its proof might generalize. Connect the conclusion to ergodicity.)


