Ma 551 - Advanced Probability

Problem Set \#3 - Due November 20, 2007

Prof. Sawyer - Washington University

Text references are to Kai Lai Chung, A Course in Probability Theory, 3rd edition, Academic Press, 2001.

1. Let $\left\{X_{n}, \mathcal{F}_{n}\right\}$ be a submartingale on a probability space (Ω, \mathcal{F}, P) such that $E\left(X_{n}\right)=E\left(X_{1}\right)$ for all $n \geq 1$. Prove that $\left\{X_{n}, \mathcal{F}_{n}\right\}$ is a martingale.
2. Let X_{i} be i.i.d. such that $\phi(\theta)=\operatorname{Exp}\left(e^{\theta X_{i}}\right)<\infty$ for all real θ and $E\left(X_{i}\right)<0$. Let $S_{n}=X_{1}+X_{2}+\ldots+X_{n}$. Then $\lim _{n \rightarrow \infty} S_{n}=-\infty$ a.s. by the strong law of large numbers, but, if $P\left(X_{i}>0\right)>0$, we can think about the largest positive value that S_{n} takes on before converging to $-\infty$. Prove that there exists a value $\theta_{0}>0$ such that for all $\lambda>0$,

$$
\operatorname{Pr}\left(\max _{1 \leq n<\infty} S_{n} \geq \lambda\right) \leq e^{-\theta_{0} \lambda}
$$

(Hints: Show $\phi(0)=1, \phi^{\prime}(0)=E\left(X_{i}\right)<0$, and $\lim _{\theta \rightarrow \infty} \phi(\theta)=\infty$. Conclude that $\phi\left(\theta_{0}\right)=1$ for some $\theta_{0}>0$. Show that $E\left(e^{\theta S_{n}}\right)=\phi(\theta)^{n}$ and conclude that $X_{n}(\theta)=\exp \left(\theta S_{n}\right) \phi(\theta)^{-n}$ is a martingale.)
3. Let $\left\{X_{n}, \mathcal{F}_{n}\right\}$ be a martingale with uniformly bounded increments. (That is, $\left|X_{n}(\omega)-X_{n-1}(\omega)\right| \leq C$ for all ω for some C.) Prove that, with probability one,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} X_{n}(\omega)=+\infty \tag{4.1}
\end{equation*}
$$

implies

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} X_{n}(\omega)=-\infty \tag{4.2}
\end{equation*}
$$

(Hint: Use Doob's Theorem for nonnegative martingales and the Optional Stopping Theorem to show that $\sup _{n} X_{n}(\omega)=\infty \operatorname{implies}_{\inf }^{n} X_{n}(\omega)=-\infty$ except for a set of ω with probability zero. This type of argument is sometimes called "stopping before you get into trouble", which can be good advice even if you are not a stochastic process.)
4. Suppose that $p_{i j} \geq 0$ for integers $-\infty<i, j<\infty$ with $\sum_{k} p_{i k}=1$ and $p_{i i}<1$ for all i. Define random variables $X_{n} \in J=\{\ldots,-m, \ldots, 0, \ldots, n, \ldots\}$ corresponding to $X_{0}=0$ a.s. and $p_{i j}$ as in Problems 3 and 4 in Problem Set $\# 2$. Equivalently,
X_{n} is the Markov chain generated by $p_{i j}$ with $X_{0}=0$. Say that a function $\phi(k)$ on J is p-harmonic if $\phi(i)=\sum_{k \in J} p(i, k) \phi(k)$ for all $i \in J$.

Suppose that there exists a nonnegative p-harmonic function $\phi(i)$ on J that is strictly increasing and unbounded on J. (That is, such that $\phi(n)<\phi(n+1)$ for all n and $\sup _{n} \phi(n)=\infty$.) Prove that

$$
\lim _{n \rightarrow \infty} X_{n}(\omega)=-\infty \quad \text { a.s. }
$$

This shows that there is a connection between the harmonic functions of an infinite matrix $p_{i j}$ and the sample behavior of X_{n}. (Hint: Is $\left\{\phi\left(X_{n}\right), \mathcal{F}_{n}\right\}$ a martingale for $\mathcal{F}_{n}=\mathcal{B}\left(X_{1}, \ldots, X_{n}\right)$? A submartingale? $)$

