
Ma551 — Advanced Probability
Solutions for Problem Set #3 due November 17, 2009

Prof. Sawyer — Washington University

Six problems. See the Math 551 Web site for the statement of problems.

1. For each ε > 0, there exists K = Kε such that |h(y)| ≥ 2C/ε for |y| ≥ K. Then
P (|Xn| ≥ K) ≤ P

(|h(Xn)| ≥ 2C/ε
) ≤ (ε/(2C))E(|h(Xn)|) < ε for all n ≥ 1, or

equivalently P
(
Xn ∈ [−K, K]

) ≥ 1− ε for all n.

2. Let Hn(y) = P (Xn + hnYn ≤ y). For each ε > 0, there exists K = Kε such
that P (|Yn| ≥ K) < ε. Chose n0 such that |hn| < ε/K for n ≥ n0. Then, if n ≥ n0,
P (|hnYn| > ε) = P (|Yn| > ε/hn) ≤ P (|Yn| > K) < ε. This implies

Hn(y) = P (Xn ≤ y − hnYn) ≤ P (Xn ≤ y + ε) + ε

≥ P (Xn ≤ y − ε)− ε

(Remark : This implies ρ(Hn, Fn) → 0 for the Lévy metric ρ(F,G) defined in
Problem 4. Since ρ(Fn, F ) → 0 and ρ satisfies the triangle inequality, ρ(Hn, F ) → 0
and we are done. The rest of the proof is for those who have not yet done Problem 4.)

Assume that y and y ± ε are points of continuity of F (y). Then P (Xn ≤
y ± ε) → F (y ± ε) and

F (y − ε)− ε ≤ lim inf
n→∞

Hn(y) ≤ lim sup
n→∞

Hn(y) ≤ F (y + ε) + ε

Since y is a point of continuity of F (y), and since the above holds for a sequence
ε = εm → 0, it follows that Hn(y) → F (y).

3. Let φ(θ) = E
(
eiθX1

)
=

∫∞
−∞ eiθyFX(dy). Then

E
(
eiθY

)
=

∞∑
n=0

E
(
eiθY I[M=n]

)
=

∞∑
n=0

E

(
n∏

k=1

eiθXkI[M=n]

)

Since the {M, X1, . . . } are independent,

E
(
eiθY

)
=

∞∑
n=0

φ(θ)nP (M = n) = e−µ
∞∑

n=0

µnφ(θ)n/n! = exp
(
µ(φ(θ)− 1)

)

which implies the desired result.
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4. (a) (i) ρ(F, F ) = 0, and, since F (x) and G(x) are right continuous, ρ(F,G) 6= 0
if F 6= G. (ii) Note F (x− ε)− ε ≤ G(x) and G(x) ≤ F (x + ε) + ε for all x implies
G(x − ε) − ε ≤ F (x) and F (x) ≤ G(x + ε) + ε for all x. Thus ρ(F, G) = ρ(G,F ).
(iii) Suppose that ρ(F, G) < ε1 and ρ(G,H) < ε2. Then, for all x,

H(x− ε1 − ε2)− ε1 − ε2 ≤ G(x− ε1)− ε1 ≤ F (x)

with similar upper inequalities. Thus ρ(F, H) < ε1 + ε2 and ρ satisfies the triangle
inequality.

(b) If ρ(Fn, F ) → 0, then

F (y − ε)− ε ≤ Fn(y) ≤ F (y + ε) + ε (1)

for n ≥ n0(ε) and all y. Thus Fn(y) → F (y) at all points of continuity y of F (y).
Now assume Fn → F in distribution. If ρ(Fn, F ) does not converge to zero,
there exists a subsequence (while we also call {Fn }) and a value ε > 0 such that
ρ(Fn, F ) ≥ 2ε > 0, and thus real values yn such that

F (yn − ε)− ε ≥ Fn(yn) or Fn(yn) ≥ F (yn + ε) + ε (2)

with, choosing a further subsequence if necessary, one of the two inequalities in (2)
holding for all n. Since Fn, F are distribution functions, there cannot exist a sub-
sequence ynk

→ ∞ or ynk
→ −∞, so that yn are bounded. Hence there exists a

further subsequence (which we also call Fn, yn) such that yn → y for y ∈ R. Recall
that if Fn → F and yn → y, then

F (y−) ≤ lim inf
n→∞

Fn(yn) ≤ lim sup
n→∞

Fn(yn) = F (y)

Then by (2)

F (y − ε)− ε ≥ F (y−) or F (y) ≥ F ( (y + ε)− ) + ε

for some ε > 0, either of which provides a contradiction.

5. (a) E(|Xk|2−δ) = 2
∫∞
1

y2−δy−3dy < ∞ for δ > 0 but not for δ ≤ 0, etc.
(b) Set Sn = (X1+X2+. . .+Xn)/an for an = c

√
n log n for some constant c > 0.

Then E
(
eiθSn

)
= φ(θ/an)n for φ(θ) = E

(
eiθX1

)
. Since the Xk are symmetrically

distributed, φ(θ) = φ(−θ) and, for θ > 0,

1− φ(θ) =
∫

|y|≥1

(
1− eiθy

) dy

|y|3 = 2
∫ ∞

1

(
1− cos(θy)

)dy

y3

= 2θ2

∫ ∞

θ

(1− cos y)
dy

y3
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By L’Hopital’s rule (or otherwise), limθ→0

∫∞
θ

(1 − cos y)y−3dy
/

log(1/θ) = 1/2,
so that

lim
θ→0

1− φ(θ)
θ2 log(1/θ)

= 1

In particular, for fixed θ > 0,

1− φ(θ/an) ∼ θ2

a2
n

log
(an

θ

)
=

θ2

c2n log n
log

(
c
√

n log n

θ

)

=
θ2

2c2n log n

(
log n + log log n + 2 log(c/θ)

) ∼ θ2

2c2n

as n →∞. Thus

log φ(θ/an) = log
(
1− (1− φ(θ/an))

)
= −(

1− φ(θ/an)
)

+ O(1/n2)

and

log
(
E

(
eiθSn

))
= n log φ(θ/an) = −n

(
1− φ(θ/an)

)
+ O(1/n) → − θ2

2c2

Thus E
(
eiθSn

) → exp(−θ2/2) for all θ for c = 1, which implies that Sn converges
in distribution to a standard normal distribution.

6. (a) Here Sn = (X1 + X2 + . . . + Xn)/
√

n where

φk(θ) = E
(
eiθXk

)
=

eiθ
√

k

2k
+

(
1− 1

k

)
+

e−iθ
√

k

2k
= 1 − 1− cos(θ

√
k)

k
(1)

Then E
(
eiθSn

)
=

∏n
k=1 φk

(
θ/
√

n
)
. We give two proofs of part (a), the first using

Theorem 28.3 in the text, which was proven in class, and the second arguing directly
from Φn(θ) = E

(
eiθSn

)
.

Proof I. Thus Sn =
∑n

k=1 Xnk for Xnk = Xk/
√

n. Since E(Xnk) = 0,
E(X2

nk) = E(X2
k)/n = 1/n, and E(S2

n) = 1, the Sn are the row sums of a tri-
angular array in the sense of page 272 of the text. Thus by Theorem 28.3

lim
n→∞

(
E

(
eiθSn

)− exp

(
n∑

k=1

(
φk

(
θ√
n

)
− 1

)))
= 0 (2)

for all θ. By (1)

n∑

k=1

(
φk

(
θ√
n

)
− 1

)
= −

n∑

k=1

1− cos
(
θ
√

k/n
)

k
= − 1

n

n∑

k=1

(
1− cos

(
θ
√

k/n
)

k/n

)
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Since 1 − cos(y) ≤ (1/2)y2 for all y, the term within the last set of parentheses in
the display is uniformly bounded for fixed θ and 1 ≤ k ≤ n. Hence for all θ

lim
n→∞

n∑

k=1

(
φk

(
θ√
n

)
− 1

)
= −

∫ 1

0

1− cos
(
θ
√

y
)

y
dy = −2

∫ 1

0

1− cos
(
θy

)

y
dy

Hence by (2)

lim
n→∞

E
(
eiθSn

)
= ψ(θ) = exp

(
−2

∫ 1

0

1− cos
(
θy

)

y
dy

)
(3)

= exp

(
−2

∫ θ

0

1− cos(y)
y

dy

)

Proof II. Since 1− cos(y) ≤ (1/2)y2 for all y, it follows from (1) that

1− φk

(
θ√
n

)
=

1
n

(
1− cos

(
θ
√

k/n
)

k/n

)
= O(1/n)

uniformly for 1 ≤ k ≤ n and

log φk

(
θ√
n

)
= log

(
1−

(
1− φk

(
θ√
n

)))
= −

(
1− φk

(
θ√
n

))
+ O

(
1
n2

)

where the error term is uniform for 1 ≤ k ≤ n. Hence the logarithms below exist
and

log
(
E

(
eiθSn

))
=

n∑

k=1

log φk

(
θ√
n

)
= −

n∑

k=1

(
1− φk

(
θ√
n

)
+ O

(
1
n2

))

=

(
− 1

n

n∑

k=1

(
1− cos(θ

√
k/n)

k/n

))
+ O

(
1
n

)

→ −
∫ 1

0

1− cos(θ
√

y)
y

dy = −2
∫ 1

0

1− cos(θy)
y

dy

and (3) follows as above.
(b) The function ψ(θ) is continuous in θ and limθ→0 ψ(θ) = 1. Thus, by

the Lévy continuity theorem, there exists a distribution function F (y) such that
Fn(y) = P (Sn ≤ y) → F (y) at all continuity points of F (y) and ψ(θ) =

∫
eiθyF (dy).

If F (y) were normal, then ψ(θ) = ψN (θ) = exp(iµθ − (1/2)σ2θ2) for some
choice of real constants µ and σ. However

d

dθ
log ψ(θ) = −2

1− cos θ

θ
and

d

dθ
log ψN (θ) = iµ− σ2θ

Note that (d/dθ) log ψ(θ) = 0 if and only if θ = 2nπ for some n 6= 0, which is not
true for (d/dθ) log ψN (θ) for any values of µ and σ. Thus F (y) cannot be a normal
distribution.


