Ma 551 — Advanced Probability
Solutions for Problem Set #3 due November 17, 2009

Prof. Sawyer — Washington University
Six problems. See the Math 551 Web site for the statement of problems.

1. For each € > 0, there exists K = K, such that |h(y)| > 2C/e for |y| > K. Then
P(|X,| > K) < P(JM(X,)| = 2C/e) < (¢/(2C))E(|M(X,)|) < € for all n > 1, or
equivalently P(Xn €K, K]) > 1 — € for all n.

2. Let H,(y) = P(X,, + h,Y, < y). For each € > 0, there exists K = K, such
that P(|Y,| > K) < e. Chose ng such that |h,| < ¢/K for n > ng. Then, if n > ny,
P(|hn Y| > €) = P(|Yn| > €/hy) < P(|Yn]| > K) < e. This implies

Hn(y) = P(Xn Sy_hnyn) < P<Xn §y+e)+€

> P(X,<y—e€)—c¢

(Remark: This implies p(H,, F,) — 0 for the Lévy metric p(F,G) defined in
Problem 4. Since p(F),, F') — 0 and p satisfies the triangle inequality, p(H,, F) — 0
and we are done. The rest of the proof is for those who have not yet done Problem 4.)

Assume that y and y £ € are points of continuity of F(y). Then P(X, <
yte) — F(y+e) and

Fly—e¢)—e < liminf H,(y) < limsupH,(y) < F(y+¢)+e

n—0o0 n—00

Since y is a point of continuity of F'(y), and since the above holds for a sequence
€ = €y, — 0, it follows that H,,(y) — F(y).

3. Let ¢(0) = E(e'%1) = [7_€Fx(dy). Then

29Y Z E zGYIM n) = i E <ﬁ €i9XkI[M:n]>
n=0 1

k=

Since the { M, X1,...} are independent,
e'?Y) Z GO)"P(M =n) = e "> pu"¢(0)"/n! = exp(u(s(d) — 1))
n=0

which implies the desired result.
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4. (a) (i) p(F,F) =0, and, since F'(x) and G(x) are right continuous, p(F,G) # 0
if FF# G. (ii) Note F(z —¢€) — e < G(x) and G(z) < F(x + €) + € for all x implies
Gx—€) —e < F(z) and F(z) < G(x + €) + € for all x. Thus p(F,G) = p(G, F).
(iii) Suppose that p(F,G) < €; and p(G, H) < €2. Then, for all z,

H($—€1—62)—€1—62 S G(ZL’—El)—El S F(.CC)

with similar upper inequalities. Thus p(F, H) < €; + €2 and p satisfies the triangle
inequality.
(b) If p(F,, F) — 0, then

Fly—e)—e < Fuly) < F(y+e) te (1)

for n > ng(e) and all y. Thus F,(y) — F(y) at all points of continuity y of F(y).
Now assume F,, — F' in distribution. If p(F,,, F) does not converge to zero,
there exists a subsequence (while we also call { F,, }) and a value € > 0 such that
p(F,, F) > 2¢ > 0, and thus real values y,, such that

Flyn—€) —€ =2 Fu(yn) or Fu(yn) 2 F(yn+€) +¢ (2)

with, choosing a further subsequence if necessary, one of the two inequalities in (2)
holding for all n. Since F,,, ' are distribution functions, there cannot exist a sub-
sequence y,, — 0O OI Y, — —00, so that y, are bounded. Hence there exists a
further subsequence (which we also call F,,,y,) such that y, — y for y € R. Recall
that if F,, — F and y,, — y, then

F(y—) < liminf F,(y,) < limsup F,,(y,) = F(y)

n—oo n—oo

Then by (2)
Fly—e)—e 2 Fly—) or F(y) = F((y+e)—)+e
for some € > 0, either of which provides a contradiction.

5. (a) B(|Xg*7%) =2 [ y*°y~3dy < oo for § > 0 but not for § <0, etc.
(b) Set S, = (X1+X2+...+X,)/a, for a,, = cy/nlogn for some constant ¢ > 0.
Then E(e9") = ¢(6/a,)™ for ¢(0) = E(e"**). Since the X are symmetrically

distributed, ¢(6) = ¢(—6) and, for 6 > 0,

1 (0) = /|y|>1 (1—ei9y)|‘;% - 2/100(1—cos(9y))‘;—§

= 292/9 (1—cosy)y—3
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By L’Hopital’s rule (or otherwise), limg_ [, (1 — cosy)y3dy / log(1/6) = 1/2,

so that
1—9(0) _
im ———— =
0—0 621og(1/0)
In particular, for fixed 6 > 0,

62 an 62 cyv/nlogn
]. - 6 n ~ —l _— = l
¢(6/an) a? og( ) c?nlogn og( 0 )

2 0
62 62
= m(logn+loglogn+210g(c/9)) ~

2¢2n

as n — o0o. Thus

log p(6/an) = log(1—(1—¢(0/an))) = —(1—¢(0/an)) +O(1/n?)
and

log (E(¢%5")) = nlogé(8/an) = —n(1— d(6/an)) +O(1/n) — _2’;

c2

Thus E (') — exp(—6?/2) for all § for ¢ = 1, which implies that S, converges
in distribution to a standard normal distribution.

6. (a) Here S, = (X1 + X2+ ...+ X,,)/+/n where

i0Vk —i6Vk — Cos
bu(8) = B (e7%4) = & k+(1‘1)+6 MR loesOVR) g

2k k 2k k

Then E (e¥°") = [;_, ¢x(68//n). We give two proofs of part (a), the first using
Theorem 28.3 in the text, which was proven in class, and the second arguing directly
from ®,,(0) = E (e9).

Proof I. Thus S, = Y ;_, Xux for X,y = Xp/yv/n. Since E(X,;) = 0,
E(X2,) = E(X})/n = 1/n, and E(S?) = 1, the S, are the row sums of a tri-
angular array in the sense of page 272 of the text. Thus by Theorem 28.3

lim (E (e"%") —exp (g <¢k (%) - 1))) =0 (2)

for all 6. By (1)

(o () 1) - 1 (o)
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Since 1 — cos(y) < (1/2)y? for all y, the term within the last set of parentheses in
the display is uniformly bounded for fixed # and 1 < k < n. Hence for all 6

Hence by (2)
1 — COS
lim E (e5") = ¢() = exp (—2 /0 ﬂdy) (3)

n—oo y

B B 91— cos(y)
= exp( 2/0 —y dy)

Proof II. Since 1 — cos(y) < (1/2)y? for all y, it follows from (1) that
0 1 (1—-cos(0\/k/n
11— | — | = = ( /) = O(1/n)
vn n k/n

uniformly for 1 < k£ <n and

() < (- () =~ () o

where the error term is uniform for 1 < k£ < n. Hence the logarithms below exist
and

i = Foun () - -E - () 0 (3)
(R () o)

k=1

11— cos(d -
. _/ cos(04/y) dy = _2/ 1 — cos(0y) dy
0 0

) Y

and (3) follows as above.

(b) The function () is continuous in 6 and limyp_g1(0) = 1. Thus, by
the Lévy continuity theorem, there exists a distribution function F(y) such that
F,(y) = P(S, <y) — F(y) at all continuity points of F(y) and ¢(0) = [ e F(dy).

If F(y) were normal, then () = ¥y (0) = exp(iud — (1/2)0%6?) for some
choice of real constants 1 and o. However

d 1 —cosf d . 9

=0 log(0) = —2T and =0 logn(0) = ip — 0“6

Note that (d/df)log(f) = 0 if and only if § = 2n7 for some n # 0, which is not
true for (d/df)log ¥y (6) for any values of u and o. Thus F(y) cannot be a normal

distribution.



