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ABSTRACT
Frequencies of mutant sites are modeled as a Poisson random field in two species that

share a sufficiently recent common ancestor. The selective effect of the new alleles can be
favorable, neutral, or detrimental. The model is applied to the sample configurations of
nucleotides in the alcohol dehydrogenase gene (Adh) in Drosophila simulans and D. yakuba
(McDonald and Kreitman 1991, Nature 351: 652–654). Assuming a synonymous
mutation rate of 1.5 × 10−8 per site per year and 10 generations per year, we obtain
estimates for the effective population size (Ne = 6.5 × 106), the species divergence time
(tdiv = 3.74 Myr), and an average selection coefficient (σ = 1.53× 10−6 per generation for
advantageous or mildly detrimental replacements), although it is conceivable that only two
of the amino acid replacements were selected and the rest neutral. The analysis, which
includes a sampling theory for the independent infinite sites model with selection, also
suggests the estimate that the number of amino acids in the enzyme that are susceptible
to favorable mutation is in the range 2–23 out of 257 total possible codon positions at any
one time. The approach provides a theoretical basis for the use of a 2 × 2 contingency
table to compare fixed differences and polymorphic sites with silent sites and amino acid
replacements.

It has been more than 25 years since Lewontin

and Hubby (1966) first demonstrated high levels
of molecular polymorphism in Drosophila pseudoob-
scura. This finding had two strong immediate ef-
fects on evolutionary genetics: it stimulated molec-
ular studies of many other organisms, and it led to
a vigorous theoretical debate about the significance
of the observed polymorphisms (Lewontin 1991).
The experimental studies soon came to a consen-
sus in demonstrating widespread molecular poly-
morphism in numerous species of plants, animals,
and microorganisms. The theoretical debate was
not so quickly resolved. One viewpoint (Kimura

1968, 1983) held that most observed molecular vari-
ation within and among species is essentially selec-
tively neutral, with at most negligible effects on sur-
vival and reproduction. Opposed was the classical
Darwinian view that molecular polymorphism is the
raw material from which natural selection fashions
evolutionary progress, and that the newly observed
molecular variation was unlikely to be any different
(Lewontin 1974). The two viewpoints could not

have been more at odds, and a great controversy en-
sued. To a large extent the issue has been clouded
by inadequate data (Lewontin 1974, 1991). Ob-
servations of natural populations are snapshots of
particular places and times, and the resulting infer-
ences about the long-term fate of molecular poly-
morphisms can be challenged by neutralists and se-
lectionists alike. By the same token, laboratory ex-
periments capable of detecting selection coefficients
as small as are likely to be important in nature
are currently impractical (Hartl and Dykhuizen

1981, Hartl 1989), although some large effects have
been documented (see Powers et al. 1991 for a re-
view).

In the 1980s, the increasing use of DNA se-
quencing in evolutionary genetics gave some hope
that the impasse could be overcome. Direct ex-
amination of genes, rather than the electrophoretic
mobility of gene products, yields vast amounts of
information consisting of hundreds or thousands of
nucleotides. The data are also of a different qual-
ity, since the DNA sequences are unambiguous and
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contain both synonymous nucleotide differences and
differences that change amino acids. To the ex-
tent that the synonymous differences are subjected
to weaker selective effects than amino acid differ-
ences, comparisons between the two types of poly-
morphisms can serve as a basis of inference. Syn-
onymous polymorphisms are more common than
amino acid polymorphisms (Kreitman 1983), and
also appear to be more weakly affected by selection
(Sawyer, Dykhuizen, and Hartl 1987).

With data from only one species, the level of
synonymous and replacement polymorphism must
be substantial in order for statistical analysis to
have enough power to detect selection (Sawyer,

Dykhuizen, and Hartl 1987; Hartl and Sawyer

1991). Most eukaryotic genes are not sufficiently
polymorphic to allow this approach. An alternative
approach, pioneered by Hudson, Kreitman, and
Aguadé (1987), is based on comparing polymor-
phisms within species with fixed differences between
species. This approach has been applied to the
Drosophila fourth chromosome (Berry, Ajioka,

and Kreitman 1991) as well as to the tip of the
X chromosome (Begun and Aquadro 1991), both
of which are regions of reduced recombination. The
level of polymorphism in these regions is also re-
duced, and the analysis suggests strongly that the
reduction is the result of genetic hitchhiking associ-
ated with periodic selective fixations.

Comparison of molecular variation within and
between species is also the crux of a statistical test
proposed by McDonald and Kreitman (1991a).
The test is for homogeneity of entries in a 2 × 2
contingency table based on aligned DNA sequences.
The rows in the contingency table are the num-
bers of replacement or synonymous nucleotide dif-
ferences, and the columns are either the numbers
of fixed differences between species or else of poly-
morphic sites within species. Here polymorphic sites
are defined as sites that are polymorphic within one
or more of the species, and fixed differences are de-
fined as sites that are monomorphic (fixed) within
each species but differ between species. The term
silent refers to nucleotide differences in codons that
do not alter the amino acid, and replacement refers
to nucleotide differences within codons that do alter
the amino acid. The McDonald-Kreitman test com-
pares the number of silent and replacement poly-
morphic sites with the number of silent and replace-

ment fixed differences. When 30 aligned DNA se-
quences from the alcohol dehydrogenase (Adh) locus
of three species of Drosophila were compared (Mc-

Donald and Kreitman 1991a), there were too few
polymorphic replacement sites (P = 0.007, two-
sided Fisher exact test). McDonald and Kreit-

man (1991a) argue that the most likely reason for
the discrepancy is that some of the amino acid dif-
ferences were fixed as a result of positive selection
acting on replacement mutations. The possibility
that the fixed differences could have resulted from
a combination of slightly deleterious alleles (Ohta

1973), coupled with a dramatically changing popu-
lation size, was also considered by McDonald and
Kreitman (1991a) but considered implausible be-
cause this would seem to require extraordinarily fine
tuning among a large number of independent pa-
rameters.

Although the McDonald-Kreitman test has con-
siderable intuitive appeal, little quantitative theory
exists for the comparison of intraspecific polymor-
phism with interspecific divergence in the presence
of selection. In this paper we present such a the-
ory. Among other things, it addresses the question
of whether the imbalance in the Adh contingency
table could have resulted from the random fixation
of mildly deleterious alleles over an extremely long
time in a population of constant size, rather than
fixations of advantageous alleles in a shorter period
of time. The theory also provides an estimate of the
average amount of selection required to produce the
discrepancy observed, as well as an estimate of the
rate at which favorable mutations occur (or, equiv-
alently, an estimate of the average number of amino
acids in the protein that are susceptible to a fa-
vorable mutation at any one time). Several objec-
tions to the details of the implementation of the
McDonald-Kreitman test have been raised (Graur

and Li 1991, Whittam and Nei 1991), and these
are also addressed briefly.

Rationale and Results of the Analysis

The first step in our method is to analyze the sample
configurations of the nucleotides occurring at syn-
onymous sites in the aligned DNA sequences un-
der the assumption that the synonymous variation
is selectively neutral. This information is used to
estimate the mutation rate at silent sites and the
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divergence time between pairs of species. The diver-
gence time is critical because, if the divergence time
between species is sufficiently long, then conceiv-
ably all of the fixed amino acid differences between
species could be due to the fixation of mildly delete-
rious alleles, and the significance of the McDonald-
Kreitman contingency table might be an artifact of
saturation at silent sites. Using the estimated values
of the silent mutation rate and the divergence time,
the numbers of synonymous polymorphic sites and
fixed differences predicted from the neutral configu-
ration theory are compared with the observed num-
bers. These estimates fit the observed Adh data
very closely for all three pairwise species compar-
isons, which suggests that the configuration distri-
butions at synonymous sites are roughly consistent
with an equilibrium neutral model.

The second step is to develop equations for
the expected number of polymorphic sites and fixed
differences between a pair of species in terms of
the magnitude and direction of selection, the mu-
tation rate to new alleles having a given (constant)
selective effect, and the divergence time. From
these equations we estimate the amount of selection
needed to explain the observed deficiency or excess
in the number of replacement polymorphisms. We
also estimate the rate of new mutations resulting in
amino acid replacements (or, equivalently, the num-
ber of amino acid sites in the protein product at
which favorable or mildly deleterious substitutions
are possible at any one time). While the config-
uration analysis takes into account the possibility
of multiple mutations at the same site, the second
step assumes that this does not occur; i.e., that the
genetic locus involved has not been saturated by
mutations since the divergence of the two species.
This assumption was checked in two different ways.
First, the expected number of silent polymorphisms
was calculated by both methods and found to agree
within 12%. Second, the expected number of syn-
onymous sites with two or more neutral fixations
since the species diverged was estimated as less than
two in all cases. There are no silent site poly-
morphisms with three or more nucleotides in the
data considered, and only one silent site (between
D. melanogaster and yakuba) is polymorphic in both
species.

Most of our analysis depends on the assump-
tion of linkage equilibrium or independence be-

tween sites. There is considerable linkage dise-
quilibrium in Adh around the Fast versus Slow
electrophoretic polymorphism in D. melanogaster
(but not in D. simulans and D. yakuba). Possi-
ble balancing or clinal selection on this polymor-
phism may not only affect nucleotide configurations
in D. melanogaster , but also may not be appropri-
ate for the model of genic selection that we apply
below. Among the three species for which McDon-

ald and Kreitman (1991a) have Adh sequences,
we are most confident in applying the analysis to
the D. simulans versus D. yakuba comparison. The
resulting analysis of the joint nucleotide configura-
tions at silent sites for D. simulans and D. yakuba
leads to the following estimates for the scaled silent
mutation rate µs (summed over synonymous sites)
and the species divergence time tdiv:

µs = 2.05 and tdiv = 5.8 (1)

both scaled in terms of the haploid effective popu-
lation size Ne. That is, µs = us × Ne, where us

is the nucleotide mutation rate per generation
summed over all synonymous sites within amino
acid monomorphic codon positions in Adh other
than those coding for leucine and arginine (i.e., at
“regular” silent sites; see below). Analysis of the
numbers of replacement polymorphisms and fixed
differences then leads to the following minimal esti-
mates for the effective aggregate replacement muta-
tion rate µr and average selection coefficient γ:

µr = 0.013µs and γ = 9.95 (2)

again scaled in terms of the haploid effective popula-
tion size. The quantity µr is the aggregate base mu-
tation rate causing advantageous or mildly deleteri-
ous amino acid changes. The estimate of µr in (2)
includes a correction factor to account for silent
polymorphisms that are destined to be fixed but
are not yet fixed. The quantity γ is the estimated
average selection coefficient among advantageous or
mildly deleterious amino-acid changing mutations,
where “average” here means that γ is the selection
coefficient required to produce the same numbers of
replacement polymorphisms and fixed differences if
these replacement mutations all had the same se-
lective effect. The quantity γ is scaled in terms of
the effective population size; i.e., γ = σNe, where σ
is the same selection coefficient per generation. In
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this case, the estimates of γ and σ are the minimum
amount of selection required. Since there are no
replacement polymorphisms between D. simulans
and D. yakuba in the McDonald-Kreitman data, any
larger value than γ = 9.95 in (2), along with a cor-
respondingly smaller value of µr, would explain the
data just as well.

The estimated aggregate mutation rate at silent
sites of µs = 2.05 in (1) is based on 212 regu-
lar amino acid monomorphic codon positions (see
below). This estimate therefore corresponds to
2.05/212 = 0.0097 silent nucleotide changes per syn-
onymous site per Ne generations in the Adh se-
quence. Assuming a silent nucleotide substitution
rate of 0.015 per synonymous site per million years
(Myr) at the Adh locus, estimated from data on
Hawaiian Drosophila (Rowan and Hunt 1991), Ne

generations is 0.645 Myr. Therefore, tdiv = 5.8
in (1) implies a divergence time of 3.74 Myr be-
tween D. simulans and D. yakuba. This value is in
the middle of a range 1.6–6.1 Myr implied by single-
copy nuclear DNA hybridization data (Caccone,

Amato, and Powell 1988), where an estimated di-
vergence time between D. melanogaster and D. sim-
ulans of 0.8–3 Myr (Lemeunier et al. 1986) is used
as the standard of comparison. As a consistency
check, the same analysis was carried out with the
Adh data from D. simulans and D. melanogaster .
This analysis yielded µs = 2.07 for 213 monomor-
phic codon positions and a value of tdiv = 1.24, from
which the estimated divergence time is 0.80 Myr.
This estimate is at the low end of the range sug-
gested by Lemeunier et al. (1986).

Assuming 10 generations per year for D. sim-
ulans and D. yakuba, and a value of 0.645 Myr for
Ne generations, the estimated haploid effective pop-
ulation size of either species is Ne = 6.5 × 106 (and
hence 3.25 × 106 for the diploid population size).
This estimate is in excellent agreement with the
value of 2×106 suggested for D. simulans by Berry,

Ajioka, and Kreitman (1991). The value γ =
9.95 in (2) implies that the average selection coeffi-
cient for advantageous or mildly deleterious amino
acid replacements in Adh is σ = γ/Ne = 1.53×10−6

per generation. That is, only a very small average
selection coefficient is required to account for the
observed lack of replacement polymorphisms (or,
equivalently, the excess of fixed replacements) in the
comparison of D. simulans with D. yakuba.

Incidentally, the estimate of 1.5 × 10−9 muta-
tions per silent site per generation, derived from
Rowan and Hunt (1991) and the assumption of
10 generations per year, compares well with the rule
of thumb (Drake 1991) that, in metazoans, the
overall mutation rate is roughly one mutation per
genome per generation. For the Drosophila genome
of 165 million base pairs, this implies 6.1×10−9 mu-
tations per nucleotide pair per generation. These
estimates are quite close, particularly since there
might be a slightly smaller substitution rate at silent
sites within coding regions than for arbitrary nu-
cleotides.

The analysis of the Adh data can also be in-
terpreted in another way. If the rate of replace-
ment mutations is uniform across the coding region
of Adh, then the overall replacement mutation rate
of µr = 0.013µs implies that an average of only
about 5.7 codons out of the 257 codon positions in
the molecule are susceptible to a favorable amino
acid replacement at any one time, with all other
replacements at that time being strongly deleteri-
ous. The estimate of 5.7 amino acid positions is
based on equal mutation rates of each nucleotide.
If the mutation rates vary according to nucleotide,
the estimated number of amino acids susceptible to
favorable replacement at any one time is between 2
and 23 (see discussion below).

The remainder of this paper focuses on the
technical details pertaining to the estimates and
conclusions summarized above. The main themes
are, first, the analysis of joint nucleotide configura-
tions at silent sites from a pair of species in order
to estimate the mean mutation rate at silent sites
and the species divergence time; and, second, the
analysis of the expected probability density of poly-
morphic site frequencies and of fixed differences at
the population level in order to estimate the amount
of selection required if all favorable and weakly dele-
terious replacement mutations have the same selec-
tive effect. The population estimates are discussed
in the next section, with most of the detail deferred
to later in the paper. We then discuss the numer-
ical estimation of γ and µr, carry out the analysis
of joint nucleotide configurations, and finally give
some supplementary comments on certain criticisms
of the McDonald-Kreitman test.
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Mutational Flux and Fixed Differ-
ences

Suppose that new mutations arise with probabil-
ity vN > 0 per generation in a population of haploid
size N . Let XN

i,k be the frequency of the descendants
of the ith new mutant allele in the population, where
k = 0, 1, 2, . . . is the number of generations that have
elapsed since the original mutation occurred. We
assume that the processes {XN

i,k : i = 0, 1, . . .} are
non-interacting, as would be the case if the muta-
tions occurred at distinct sites that remain in link-
age equilibrium, or if the mutations were sufficiently
well spaced in time. The mutations could be se-
lectively advantageous, disadvantageous, or neutral,
but in any event we assume that the site frequency
processes {XN

i,k} are stochastically identical Markov
chains. (That is, they have the same transition ma-
trices.) Note that XN

i,0 = 1/N for each i, since each
new process begins with a single mutation. The
states 0 and 1 are absorbing states that represent,
respectively, the loss of the new allele and its fixa-
tion.

Define T N
i,a = min{k : XN

i,k = a} as the num-
ber of generations until the ith process attains the
frequency a for the first time, and set T N

i,a = ∞ if
the allele is fixed or lost before this occurs. For the
sake of brevity, let XN

k = XN
i,k and T N

a = T N
i,a refer

to a typical process XN
i,k. Then P (T N

1 < T N
0 ) is the

probability that a new mutant allele is fixed in the
population before it is lost.

We apply a diffusion approximation for the dis-
crete processes {XN

i,k}. The diffusion process is de-
noted {Xt}, where time is scaled in units of N gen-
erations (i.e., t = k/N for large N), and the in-
finitesimal generator of {Xt} is assumed to be of
the form

Lx =
1
2
b(x)

d2

dx2
+ c(x)

d

dx
(3)

where b(x) and c(x) are continuous functions on
[0, 1]. The operator Lx in (3) can be written in
the form

Lx =
d

dm(x)
d

ds(x)
(4)

by introducing an integrating factor. The functions
dm(x) and s(x) are called the speed measure and
the scale function of Lx, respectively (Ewens 1979).

Later in the paper we derive a diffusion approxima-
tion for the expected number of processes {XN

i,k} at
equilibrium whose allele frequencies are in the range
(p, p+dp), and we also calculate the equilibrium rate
at which mutant alleles become fixed.

Now, assume that the processes {XN
i,k} corre-

spond to two-allele haploid Wright-Fisher models
(without mutation) in which organisms carrying a
new mutant allele have fitness wN = 1 + σN rel-
ative to those carrying the non-mutant allele. If
NσN → γ as N → ∞, then the conditions for a
diffusion approximation hold with

b(x) = 1
2x(1 − x) and c(x) = γx(1 − x) (5)

(Ewens 1979). The scale and speed measure (4)
are then

s(x) =
1 − e−2γx

2γ
and dm(x) =

2e2γx dx

x(1 − x)
(6)

where s(x) is normalized so that s′(0) = 1.
In general, the hitting times Ta = min{t : Xt =

a} for a diffusion process Xt and the scale func-
tion s(x) in (4) are related by the identity

P (Ta < T0 | X0 = x) =
s(x) − s(0)
s(a) − s(0)

, 0 < x < a

If {XN
i,k} are the two-allele haploid Wright-Fisher

models of (5–6), then as N → ∞

P (T N
1 < T N

0 ) ∼ P (T1 < T0 | X0 =
1
N

) (7a)

∼ s(1/N) − s(0)
s(1) − s(0)

∼ 1
N

2γ

1 − e−2γ
(7b)

(Moran 1959; recall that XN
0 = 1/N). Note

that (7a) does not follow from standard diffusion
approximation theory, which implies only that the
difference between the two probabilities in (7a) con-
verges to zero. In this case, this is trivial because
the two terms in (7a) converge to zero individu-
ally. Whether (7a) holds for general diploid or
dioecious two-allele selection-and-drift models, even
those with the same diffusion approximation (5),
is apparently still an open problem (Moran 1959;
T. Nagylaki, personal communication).

Next, assume

vN → µ as N → ∞ (8)
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so that µ is the limiting mutation rate per genera-
tion at which new mutant alleles arise. For arbitrary
processes {XN

i,k} satisfying (7a) and s′(0) = 1, we
prove later in this paper that the limiting density
of polymorphic mutant alleles with population fre-
quencies in the range (x, x + dx) is

µ
s(1) − s(x)
s(1) − s(0)

dm(x) (9)

for s(x) and dm(x) in (4). This means that the
expected number of mutant alleles with population
frequency p in the range 0 < p1 < p < p2 < 1 is
the integral of (9) over the interval (p1, p2). (More
precisely, the limiting distribution of the population
frequencies of surviving non-fixed mutant alleles is a
Poisson random field with (9) as its mean density.)
We also show that the limiting flux of the processes
{XN

i,k} into the state 1 (i.e., into fixation) is given
by

µ

s(1) − s(0)
(10)

in the time scale of the diffusion. That is, (10) is
the limiting number of mutant alleles per N gener-
ations that become fixed. Note that vN and µ in
(8) are expressed as rates per generation, whereas
(10) is the rate per N generations. The difference
in time scale reflects the fact that most of the new
mutant allele processes become lost in the first few
generations.

Frequencies of Wright-Fisher alleles. For the
two-allele Wright-Fisher model (5–6) with γ 6= 0,
the equilibrium flux of fixations (10) and the limit-
ing density (9) of non-fixed mutant allele frequencies
take the respective forms

µ
2γ

1 − e−2γ
and 2µ

1 − e−2γ(1−x)

1 − e−2γ

dx

x(1 − x)
(11)

where γ > 0 indicates that the mutant alleles are
favorable and γ < 0 that they are unfavorable. In
the neutral case (γ = 0), the limiting fixational flux
and polymorphic frequency density in (11) are

µ and 2µ
dx

x
(12)

respectively. The expressions in (11) and (12) are
displayed in Table 1. Finally, from (12), the ex-
pected number of neutral alleles with frequencies p
in the range p1 < p < p2 is given by

2µ log(p2/p1)

This expression differs from the corresponding ex-
pected value in the infinite alleles model (Ewens

1972, 1979). However, the Poisson random field
model of the preceding section is not the same as
the infinite alleles model. The alleles in (12) do not
compete with one another, and there are no con-
straints on the sum of the frequencies {XN

i,k}. The
processes {XN

i,k} are also unaffected by subsequent
mutations. This model also differs from the infinite
sites model of Watterson (1975), since the pro-
cesses {XN

i,k} are assumed to be independent (i.e.,
in linkage equilibrium). A model of unlinked or
independent sites might be preferable on general
grounds to the tightly-linked sites of the infinite
sites model, not only because of chromosomal re-
combination, but also because of the likely frequent
occurrence of short-segment gene conversion events
in both prokaryotes and eukaryotes (Sawyer 1989,
Smith et al. 1991, Hilliker et al. 1991).

For more general processes {XN
i,k}, where the

connection condition (7a) may not hold, the rela-
tions (9) and (10) are still valid provided that vN

in (8) is divided by the ratio of the two probabil-
ities in (7a). Sewall Wright (1938) derived a dis-
tribution similar to (9) as an approximation to a
quasi-stable distribution for one allele under selec-
tion and irreversible mutation. Wright’s (1938)
problem involved a transient distribution for a sin-
gle allele, and does not carry over to the equilibrium
distribution (9) for a random field of alleles.

Between-species comparisons. In order to an-
alyze differences between species, we assume that
a single population had become separated into two
disjoint and reproductively isolated subpopulations
or species at a time tdiv in the past, measured in
terms of the diffusion time scale (i.e., the split oc-
curred tdiv × N generations before the present).
Both subpopulations are assumed to have haploid
effective size N . If mutations that occur after the
population split can be distinguished, and if the
number of fixations that have occurred in the two
species can be approximated by 2tdiv times the equi-
librium flux of fixations, then the number of muta-
tions that correspond to fixed differences between
the two species is 2tdiv times the first expressions in
(11) and (12). An important quantity is the ratio of
the expected number of polymorphic alleles in the
frequency range (x, x+ dx) to the expected number
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Table 1. Population fixational flux and polymorphic densities.

Equilibrium Limiting density of freqs.
flux of fixations of mutant nucleotides

Neutral µs 2µs
dx

x

Favored
(γ > 0)

Unfavored
(γ < 0)

µr
2γ

1 − e−2γ
2µr

1 − e−2γ(1−x)

1 − e−2γ

dx

x(1 − x)

of fixed differences, which equals

(
s(1) − s(x)

)
dm(x)

2tdiv
=

1 − e−2γ(1−x)

tdiv 2γ(1 − x)
dx

x

In the next section we will use this expression as a
basis for estimating the average value of γ for re-
placement differences between species.

Sampling Formulas and Parameter
Estimates

Suppose that two species diverged tdivNe genera-
tions ago, and that both have the same haploid effec-
tive population size Ne. Assume that the mutation
rate for silent sites in the coding region of a particu-
lar gene is µs per gene per generation, and that the
mutation rate for nonlethal replacement mutations
is µr per gene per generation. Assume further that
(i) all new replacement mutations bestow equal fit-
ness w = 1+γ/Ne, (ii) each new mutation since the
divergence of the species occurred at a different site
(in particular, the gene has not been saturated with
mutations), and (iii) different sites remain in link-
age equilibrium. Under these assumptions, the fix-
ational flux and the expected frequency densities of
mutant nucleotides at silent and replacement sites in
a single random-mating population are those given
in Table 1.

Assume further that the number of polymor-
phic sites at the present time that are destined to be-
come fixed, and the number of site polymorphisms
surviving from the time of speciation, can be ne-
glected in comparison with the number of fixed dif-
ferences between the species and the number of sites
that are presently polymorphic. Then the expected

numbers of fixed differences between the two species
at the present time are

2µstdiv and 2µrtdiv
2γ

1 − e−2γ
(13)

for silent and replacement sites respectively. Note
that the second expression in (13) is much more sen-
sitive to γ if γ < 0 than if γ > 0. For example, the
factor multiplying 2µrtdiv is 4.1 × 10−8 if γ = −10,
but only 20 if γ = 10. Thus, if the two expres-
sions in (13) are of comparable size, then γ cannot
be strongly negative. Note that µr ≤ 10µs even if
only 10% of the sites in a coding region are silent
and all amino acid replacements are advantageous
or mildly deleterious. If the two expressions in (13)
are equal and µr/µs ≤ 10, then γ ≥ −1.81. If γ is
large and positive and the two expressions are equal,
then µr/µs ≈ 1/(2γ).

Similarly, the expected mutant frequency den-
sities at silent and replacement polymorphic sites
are

dνs(x) = 2µs
dx

x
and

dνr(x) = 2µr
1 − e−2γ(1−x)

1 − e−2γ

dx

x(1 − x)

(14)

respectively in either population.

Now, suppose that we have aligned DNA se-
quences from m chromosomes from the first species
and n chromosomes from the second species. The
next step is to convert the population level esti-
mates (13–14) to sample estimates. Suppose that
a mutant nucleotide has population frequency x at
a site. Then a random sample of m chromosomes
from that population will be monomorphic for the
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mutant nucleotide with probability qm(x) = xm,
and will be polymorphic at that site with probability
pm(x) = 1−xm−(1−x)m. Thus the expected num-
ber of silent polymorphic sites in a random sample
of size m is∫ 1

0

pm(x) dνs(x) = 2µs

∫ 1

0

1 − xm − (1 − x)m

x
dx

= 2µs

m−1∑
k=1

1
k

(15)

for dνs(x) in (14). In fact, assuming linkage equi-
librium between sites, the number of silent poly-
morphic sites is a Poisson random variable whose
mean (and hence also variance) is given by (15) (see
below). The expression (15) is the same as Wat-

terson’s (1975) formula for the expected number
of polymorphic sites in a sample of size m from the
infinite sites model. However, the variance of the
number of silent polymorphic sites in the infinite
sites model is larger than the variance in the Pois-
son model (15).

The number of silent polymorphic sites in both
samples together is then

2µs

(
L(m) + L(n)

)
where

L(m) =
m−1∑
k=1

1
k

≈ log m
(16)

The estimate (16) for the number of silent poly-
morphic sites agrees with the observed numbers to
within 7% for each of the three pairwise species com-
parisons using the Adh data of McDonald and
Kreitman (1991a), assuming the values of µs es-
timated from the joint configurations in the next
section.

Similarly, a silent site will be monomorphic in a
sample of size m if it is fixed in the population, but
may also be monomorphic in a sample by chance
if it is polymorphic in the population. Under the
assumptions of (13), the number of silent sites in a
sample of size m that are monomorphic for a mutant
nucleotide is Poisson with mean

µstdiv +
∫ 1

0

xm 2µs
dx

x
= µs

(
tdiv +

2
m

)

and the number of silent fixed differences between
the two samples is

2µs

(
tdiv +

1
m

+
1
n

)
(17)

However, the estimate (17) is about 45% too large
for D. yakuba versus D. simulans and D. yakuba
versus D. melanogaster , and it is more than 5 times
too large for D. melanogaster versus D. simulans
(Table 9). The most likely reason for these dis-
crepancies is that the silent polymorphic sites in
the present populations that are destined to become
fixed are counted in 2µstdiv in (17) even though
they are not yet fixed. The discrepancy is not large
except for the comparison D. melanogaster versus
D. simulans , and it only affects the estimate of µr

in (1–2). A correction for this overestimation is in-
cluded in the calculation of µr in (2).

By a similar argument, the number of replace-
ment sites that are monomorphic for a mutant nu-
cleotide is Poisson with mean

µr
2γ

1 − e−2γ
tdiv +

∫ 1

0

xm dνr(x)

for dνr(x) in (14). The number of replacement fixed
differences between the two samples is then Poisson
with mean

2µr
2γ

1 − e−2γ

(
tdiv + G(m) + G(n)

)
(18)

where

G(m) =
∫ 1

0

xm−1 1 − e−2γ(1−x)

2γ(1 − x)
dx

Note G(m) ≤ 1/m for γ > 0. By the same reason-
ing, the expected number of polymorphic replace-
ment sites in a sample is

2µr

(
H(m) + H(n)

)
(19)

where

H(m) =∫ 1

0

1 − xm − (1 − x)m

x(1 − x)
1 − e−2γ(1−x)

1 − e−2γ
dx

The expression H(m) varies by only a factor of two
for γ > 0, since the inequality A ≤ (1− e−γA)/(1−
e−γ) ≤ 1 for 0 < A < 1 implies

L(m) ≤ H(m) ≤ 2L(m), γ > 0

for L(m) =
∑m−1

k=1 1/k. However, H(m) will be
smaller if γ is large and negative.
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Table 2. Sampling formulasa

Fixed differences Polymorphic sites

Neutral 2µs

(
tdiv +

1
m

+
1
n

)
2µs

(
L(m) + L(n)

)

Selected 2µr
2γ

1 − e−2γ

(
tdiv + G(m) + G(n)

)
2µr

2γ

1 − e−2γ

(
F (m) + F (n)

)

where L(m) =
m−1∑
k=1

1
k

and

F (m) =
∫ 1

0

1 − xm − (1 − x)m

1 − x

1 − e−2γx

2γx
dx,

G(m) =
∫ 1

0

(1 − x)m−1 1 − e−2γx

2γx
dx

a Expected numbers for samples of m genes from one species and n genes
from a second species.

The ratio of the number of replacement poly-
morphic sites to the number of replacement fixed
differences is given by the ratio of (19) to (18), which
is

F (m) + F (n)
tdiv + G(m) + G(n)

(20)

where

F (m) =
1 − e−2γ

2γ
H(m)

=
∫ 1

0

1 − xm − (1 − x)m

1 − x

1 − e−2γx

2γx
dx

after a change of variables in x. The four basic sam-
pling formulas are summarized in Table 2.

Note that F (m) ∼ L(m)/γ and G(m) → 0 as
γ → ∞ for L(m) =

∑m−1
k=1 1/k in (16). Thus the

expression in (20) is asymptotic to

L(m) + L(n)
tdivγ

as γ → +∞ (21)

Estimating parameters. We estimate γ by set-
ting the expression (20)

F (m) + F (n)
tdiv + G(m) + G(n)

(22)

=
Numb. observed repl. polymorphisms
Numb. observed repl. fixed differences

for the ratio of the numbers of the observed replace-
ment polymorphic sites and replacement fixed dif-
ferences. (Note that µr cancels in this particular
ratio. If γ > 0 is sufficiently large, the approxi-
mation (21) can be used instead.) If the number of
replacement polymorphic sites is zero (as it is for the
D. simulans versus D. yakuba comparison), then we
use 1/2 as a conservative value to replace the zero.
For example, if there are no replacement polymor-
phic sites and 6 fixed replacement differences (as is
the case for D. simulans versus D. yakuba), we set
the expression in (20) equal to 1

2/6 = 1/12 and solve
for γ. Using the estimate tdiv = 5.8 derived in the
next section, the solution is γ = 9.95. (The approxi-
mation (21) gives γ = 11.0 in this case.) Since there
are no replacement polymorphic sites for D. simu-
lans versus D. yakuba, this value is a lower bound
for the average value of γ. Any larger value would
also be consistent with the data.

The replacement mutation rate µr can be esti-
mated by setting the ratio of the expected numbers
of replacement and silent fixed differences in (18)
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and (17)

µr 2γ

µs(1 − e−2γ)
tdiv + G(m) + G(n)
tdiv + 1/m + 1/n

(23)

=
Numb. observed repl. fixed differences
Numb. observed silent fixed differences

for the ratio of the numbers of the observed re-
placement and silent fixed differences. Setting the
theoretical ratio (23) equal to the observed ratio
6/17 for D. simulans and D. yakuba yields µr =
0.037 = 0.018µs. (Recall that only regular silent
sites are counted in the estimation of µs; see the next
section.) However, as noted earlier, both 2µstdiv

and (17) overestimate the observed number of silent
fixed differences, as well as the estimated number of
silent fixed differences using the probability distri-
bution of joint configurations (see the next section).
In both cases, the estimate (17) is too large by a
factor of about 1.4 (Table 9). Since replacement
polymorphisms with favorable mutant nucleotides
are likely to become fixed faster than silent poly-
morphisms, we apply a correction of 1.4 to µs but
not to µr in (23). This correction leads to the esti-
mate µr = 0.0265 = 0.013µs for D. simulans versus
D. yakuba. The interpretation of µr in terms of an
average of 5.7 amino acids susceptible to favorable
replacement is discussed at the end of the next sec-
tion.

Under our assumptions, the numbers of silent
and replacement fixed differences and polymorphic
sites are independent Poisson random variables (see
below). Maximum likelihood estimators for µr

and γ (along with associated confidence intervals)
can be found by setting the expressions (18) and
(19) (respectively) equal to the observed numbers of
replacement fixed differences and replacement poly-
morphic sites. The maximum likelihood estimator
for γ is the same as the estimator (22) for γ. How-
ever, we prefer to estimate µr in terms of µs and the
more numerous silent site data rather than use the
maximum likelihood estimator for µr in this case.

Divergence Times and Mutation Rates

We treat a K-fold degenerate silent site as a neu-
tral Wright-Fisher model with K types, no selection,
and mutation rate uij per generation from type i
to type j. If uij = uj depends only on j, and if
νij = Neuij = νj = Neuj is the scaled mutation

rate where Ne is the effective haploid population
size, then Wright’s (1949) formula states that the
equilibrium population frequencies p1, . . . , pK of the
K types are random with probability density

Γ(α)
Γ(α1)Γ(α2) . . . Γ(αK)

pα1−1
1 pα2−1

2 . . . pαK−1
K (24)

for large Ne. In (24), αj = 2νj = 2Neuj, α =∑K
i=1 αi, and Γ(α) is the gamma function. It follows

from (24) that E(pi) = αi/α for all i. If α1 = α2 =
· · · = αK , then α = Kαi and E(pi) = 1/K for
1 ≤ i ≤ K.

However, nucleotide frequencies at third-position
sites in fourfold degenerate codons tend to be far
from uniform (see Table 3).

Table 3. Nucleotide frequencies at 4-fold
degenerate sites in the Adh regiona

Species Seqs Sites T C A G

D. simulans 6 109 0.18 0.62 0.06 0.14
D. melanogaster 12 108 0.17 0.60 0.07 0.16
D. yakuba 12 110 0.14 0.61 0.07 0.18

a Data from McDonald and Kreitman (1991a)

Assuming that the sites are independent, de-
partures from an even distribution are highly sig-
nificant in all cases in Table 3 (P < 10−11, 3
d.f.), although the observed nucleotide frequencies
do not differ significantly among the three species
(P = 0.10, 6 d.f.). The mutation model (24) with
variable αi provides a significantly better fit to the
distribution of nucleotides at silent sites in the Adh
data than does (24) with αi = α1 (P < 10−15, 3 d.f.,
in all three species, assuming independent sites).
Although a mutation model with rates a function
of the final nucleotide, rather than the original, is
somewhat artificial, it is reasonable in the analysis
of these data since only the existing nucleotide se-
quences are known. Furthermore, since the initial
and final nucleotides may very well be correlated
(e.g., because of a transition or transversion bias),
the model with variable αi is probably reasonably
robust. In any event, it provides a significantly bet-
ter fit to the Adh data.

Assuming Wright’s model (24) at K-fold de-
generate silent sites, the equilibrium distribution
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Table 4. Sample configurations.

Configuration Probability from (25)

TTCAAG
6!

2! 1! 2! 1!
α1(α1 + 1)α2α3(α3 + 1)α4

α(α + 1)(α + 2)(α + 3)(α + 4)(α + 5)

AAAGGG
6!

0! 0! 3! 3!
α3(α3 + 1)(α3 + 2)α4(α4 + 1)(α4 + 2)
α(α + 1)(α + 2)(α + 3)(α + 4)(α + 5)

CCCCCA
6!

0! 5! 1! 0!
α2(α2 + 1) . . . (α2 + 4)α3

α(α + 1)(α + 2)(α + 3)(α + 4)(α + 5)

TTTTTC
CAAAGG

12!
5! 2! 3! 2!

α1(α1 + 1) . . . (α1 + 4)α2(α2 + 1)α3(α3 + 1)(α3 + 2)α4(α4 + 1)
α(α + 1)(α + 2) . . . (α + 11)

TCCCCC
CCCCCC

12!
1! 11! 0! 0!

α1α2(α2 + 1) . . . (α2 + 10)
α(α + 1)(α + 2) . . . (α + 11)

of population nucleotide frequencies is a K-type
Dirichlet distribution (24) with parameters αi =
2Neui, where Ne is the haploid effective population
size. If a sample of size m is randomly chosen from
this model, the probability that the sample will con-
tain mi nucleotides of type i for 1 ≤ i ≤ K is then

m!
m1! m2! . . . mK !

∏K
i=1 α

(mi)
i

α(m)
, α = α1 + · · · + αK

(25)
where α(m) = α(α + 1) . . . (α + m − 1). Examples
of (25) for some particular configurations are given
in Table 4.

There are two types of twofold degenerate sites.
At sites of the first type, the nucleotide can be ei-
ther of the two pyrimidines T or C, for which (25)
holds with K = 2. At sites of the second type,
the nucleotide can be either of the two purines A
or G, and (25) holds with K = 2 and α1, α2 re-
placed by α3, α4. The only 3-fold degenerate amino
acid, isoleucine, has third-position synonymous nu-
cleotides T, C, and A. Since the codon ATA is al-
most entirely absent in the Adh sequences, we treat
3-fold degenerate sites as 2-fold degenerate in the
analysis of silent site distributions, and ignore silent
codon positions containing an ATA. Synonymous
sites within leucine and arginine codons are of vari-
able degeneracy, since silent mutations in the first

(or third) codon position can change the degeneracy
in the third (or first) position. Codons for serine fall
into two nonoverlapping classes, one 4-fold degener-
ate and one 2-fold degenerate; we treat these two
classes as separate amino acids. We define a regular
silent site as either any 2-fold or 4-fold degenerate
third-position site in an amino acid monomorphic
codon position that does not code for leucine or argi-
nine, or else as a third-position site in an amino acid
monomorphic isoleucine codon position that does
not contain an ATA codon (Sawyer, Dykhuizen,
and Hartl 1987). Regular isoleucine silent sites
are considered 2-fold degenerate. The analysis of
nucleotide variation at silent sites is restricted to
regular silent sites.

The scaled mutation rate to nucleotides of
type j is νj = αj/2. Since E(pi) = αi/α by (24),
the overall mean mutation rate at 4-fold degenerate
silent sites is

µ4 =
4∑

i=1

αi(α−αi)/2α, α = α1 + · · ·+α4 (26)

with the rates

µTC = α1α2/(α1 + α2) and
µAG = α3α4/(α3 + α4)

(27)
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at 2-fold degenerate sites. The aggregate silent mu-
tation rate per gene at regular 2-fold and 4-fold de-
generate sites is then

µs = N2,TC µTC + N2,AG µAG + N4µ4 (28)

where N2,TC and N2,AG are the numbers of regular
2-fold degenerate silent sites of each type (TC or
AG), N4 is the number of regular 4-fold degenerate
silent sites, and 3-fold degenerate sites are counted
in N2,TC unless the codon position contains an ATA.

Table 5 gives the within-species maximum like-
lihood estimates for α1, . . . , α4 based on the con-
figuration probabilities (25) at regular silent sites
with all four αi’s varied independently in the maxi-
mization. The last two columns in Table 5 give the
resulting estimates for µ4 in (26) and µs in (27–28).
Inferred 95% confidence intervals are generally on
the order of plus or minus half the size of the esti-
mated MLE’s. Table 6 gives one-dimensional max-
imum likelihood estimates for the single-α model
αi ≡ α1. While the values for µ4 and µs in Table 6
are essentially the same as in the four-α model, the
model with variable αi provide a significantly better
fit to the data in all three species.

An estimate of divergence time. A time-
dependent version of Wright’s formula (24) was first
derived by Griffiths (1979). Assume that two
equilibrium Wright-Fisher K-type populations di-
verged tdiv × Ne generations ago, where Ne is the
haploid effective population size. The ancestral
population and both offshoot populations are as-
sumed to have the same haploid effective popula-
tion size and the same mutation structure uij ≡ uj .
Given present nucleotide frequencies p1, . . . , pK in
one of the populations, then the present frequencies
q1, . . . , qK in the other population are random with
probability density

P (t, p, q) =
∞∑

b=0

db(2t)
∑

∑
bi=b

b!
b1! . . . bK !

K∏
i=1

pbi

i ×

Γ(b + α)
Γ(b1 + α1) . . . Γ(bK + αK)

qb1+α1−1
1 . . . qbK+αK−1

K

(29)
where αi = 2Neui and α = α1+· · ·+αK (Griffiths

1979). The coefficients db(2t) in (29) satisfy

db(t) =
∞∑

k=b

(2k + α − 1)(−1)k−b(α + b)(k−1)

k!
e−λkt

(30a)

if b ≥ 1 and

d0(t) = 1 −
∞∑

k=1

(2k + α − 1)(−1)k−1α(k−1)

k!
e−λkt

(30b)
where α(m) = α(α+1) . . . (α + m − 1) as before and
λk = k(k + α − 1)/2. Since db(t) = O(e−b2t/3) for
large b, the series (29) converges rapidly in b unless t
is small.

Equation (29) has a simple intuitive explana-
tion (Tavaré 1984). In the limit as N → ∞
and Nuj → αj/2, all individuals in an equilib-
rium Wright-Fisher population are the descendants
of b < ∞ “founding” ancestors that lived t × Ne

generations earlier. The expression db(t) in (30ab)
is the probability distribution of b for t in the dif-
fusion time scale, under the assumption that mu-
tations break the line of descent (Tavaré 1984).
That is, db(t) is the probability that all individu-
als in the present population either have descended
without intervening mutation from one of b found-
ing individuals who existed t diffusion time units
ago, or else are descended from a mutant ancestor
that arose within the last t time units. If the nu-
cleotide frequencies were p1, . . . , pK in the ancestral
population, the probability that bi of the b founding
ancestral individuals were of type i for 1 ≤ i ≤ K
is (b!/b1! . . . bK !)

∏
pbi

i . The unmutated descendants
of these b individuals will have the same states at
the present time. Thus the nucleotide frequencies
q1, . . . , qK at the present time have a Dirichlet dis-
tribution (as in Wright’s formula (24)) conditioned
on a sample of size b having bi individuals of type i
for 1 ≤ i ≤ K. However, a K-type Dirichlet distri-
bution with parameters αi, conditioned that a sam-
ple of size b had bi individuals of type i, is Dirichlet
with parameters bi + αi. Finally, by time reversibil-
ity, the joint distribution of two present day popula-
tions, connected through an ancestral population t
time units ago, is the same as the joint distribution
of one population and an ancestral or descendant
population 2t time units apart. This completes the
proof of Griffith’s formula (29).

Suppose that a sample of size m is taken from
one species, and of size n from another, closely re-
lated, species. It follows from (29) that the joint
probability that the first sample has mi bases of
type i (1 ≤ i ≤ K), and that the second sample
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Table 5. MLE’s from Wright’s Formula (25)a

Species α1 (T) α2 (C) α3 (A) α4 (G) µ4 µs

D. simulans 0.0101 0.0326 0.0021 0.0096 0.0156 2.33
D. melanogaster 0.0082 0.0259 0.0020 0.0083 0.0130 1.92
D. yakuba 0.0063 0.0281 0.0025 0.0100 0.0135 1.93

a Estimated from regular silent sites (see text)

Table 6. MLE’s assuming αi ≡ α1

Species Normal-theory 95% CI for α1 µ4 µs

D. simulans (0.0104± 0.0065) = (0.0039, 0.0169) 0.0155 2.26
D. melanogaster (0.0087± 0.0052) = (0.0035, 0.0139) 0.0130 1.87
D. yakuba (0.0085± 0.0051) = (0.0041, 0.0136) 0.0127 1.86

Table 7. Drosophila pairwise comparisons
Model with αi ≡ α1

Species µs tdiv 95% CI for tdiv tgene µs tdiv tgene

simulans vs. yakuba 2.05 5.81 (3.28, 8.33) 6.72 1.98 5.55 6.46
melanogaster vs. yakuba 1.85 7.08 (4.06, 10.11) 8.18 1.80 6.54 7.85
melanogaster vs. simulans 2.07 1.24 (0.48, 1.99) 2.26 2.01 1.23 2.26

has nj bases of type j (1 ≤ j ≤ K), is

Cmn

∞∑
b=0

db(2t)
∑

∑
bi=b

b!
b1! . . . bK !

×

∏K
i=1 α

(bi)
i (αi + bi)(mi) (αi + bi)(ni)

α(b) (α + b)(m) (α + b)(n)

(31)

where Cmn = m!/(m1! . . .mK !) × n!/(n1! . . . nK !)
and α(m) = α(α + 1) . . . (α + m − 1) as before.

Given an aligned sample of DNA sequences
from two species, we estimate the divergence time
between the two species as follows. First, all reg-
ular silent sites (as defined earlier) within the two
species are pooled to find maximum likelihood esti-
mates of α1, . . . , α4 using Wright’s formula (25) for
the configuration probabilities. Using the estimated
values for αi, a maximum likelihood estimate of tdiv

is then found using the likelihoods (31) at regular
silent sites in the two species. Since (31) depends
on t only through db(2t), arrays (αi + bi)(mi) etc.
can be computed in advance once the αi are known,
independently of t. The most time-consuming part
of the maximization is the computation of the co-

efficients multiplying db(2t) in (31) for K = 4 and
large b.

Estimates of tdiv using this method and the
data of McDonald and Kreitman (1991a) are
given in Table 7. Note that our method gives a
direct estimate of species divergence times, rather
than of gene divergence times (i.e., the time since
the common ancestor of a set of genes, which may
be considerably older than the time since the species
diverged). In practice, estimates of the average pair-
wise gene divergence times tgene (Table 7) were com-
puted as a starting point for the maximization of the
likelihood for tdiv. These estimates of tgene tended
to be larger than tdiv, particularly when tdiv was
small. Table 7 also contains 95% confidence inter-
vals for tdiv based on the one-dimensional likelihood
curvature at tdiv. However, these confidence inter-
vals may overstate the accuracy of the estimates
since the αi were held constant. The last three
columns in Table 7 give estimates for tdiv based on
the single-α model αi ≡ α1. These were quite sim-
ilar to the estimates in the preceding four columns
based on the four-α model.

Watterson (1985, see also Padmadisastra
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1988) developed a maximum likelihood method for
estimating the divergence time between two popu-
lations based on the infinite alleles model at many
unlinked loci. If mutation is sufficiently rare so that
recurrent mutation at polymorphic sites can be ne-
glected, then this method should give estimates sim-
ilar to ours, but it does not allow for the possibility
of nucleotide-dependent mutation rates. Watter-

son (1985) also discusses five other methods of esti-
mating species divergence times and compares them
by computer simulation.

We also calculated bootstrap bias-corrected es-
timates and bias-corrected 95% confidence intervals
(Efron 1982) for tdiv in the four-α model (Ta-
ble 8). These were based on 1000 nonparametric
bootstrap simulations for each species pair with αi

fixed. The bias-corrected estimates are quite simi-
lar to the MLE’s in Table 7, but the bootstrap con-
fidence intervals, particularly the lower limits, are
shifted upwards.

Table 8. Bootstrap bias-corrected estimates

Species tdiv 95% CI

simulans vs. yakuba 5.89 (3.50, 8.90)
melanogaster vs. yakuba 7.20 (4.56, 10.52)
melanogaster vs. simulans 1.26 (0.81, 1.92)

Comparisons with data. We now compare the
observed numbers of silent polymorphic sites and
fixed differences with two sets of theoretical esti-
mates of these numbers (Table 9). The first set of
theoretical estimates is as follows. Since whether or
not a site is polymorphic or a fixed difference de-
pends on its joint configuration in the two samples,
the probability that a silent site is polymorphic or
a fixed difference can be computed from the joint
configuration probabilities (31) once αi and tdiv

are known. Estimates of the expected numbers of
silent polymorphic sites and fixed differences based
on the joint configuration probabilities (31), maxi-
mum likelihood estimates of αi and tdiv (Table 7),
and the numbers N2,TC , N2,AG, and N4 of regular
silent sites of various degeneracies, are given in Ta-
ble 9. These estimates fit the observed data very
closely, which suggests that the neutral joint con-
figuration model (31) fits the data at synonymous
sites. Note that a consistently expanding popula-
tion or deleterious selection would tend to produce

fewer polymorphisms than predicted by neutrality,
while a contracting population or balancing selec-
tion would be likely to have more polymorphisms.

The second set of theoretical estimates are the
Poisson-random-field-based sampling estimates de-
rived earlier. The number of silent fixed differences
is estimated as follows. By time reversibility, data
from two species at the present time can be viewed
as two snapshots of a single species separated in
time by 2tdiv time units. Under selective neutrality,
the rate µs of regular silent mutations per individ-
ual is the same as the long-term rate of fixations
of regular silent differences at the population level,
so that the expected number of silent mutations in
the population that will eventually become fixed dif-
ferences is 2µstdiv. However, as we start with one
contemporary species and evolve through the an-
cestral species to the other contemporary species,
2µstdiv overestimates the number of silent fixed dif-
ferences by the number of silent mutations that are
destined to become fixed in this process but which
have not yet had time to fix. There is no corre-
sponding underestimate in the number of polymor-
phic sites, since an initial polymorphic site in the
first contemporary species cannot become a fixed
difference as we proceed backwards in time through
the ancestral species and then forwards to the sec-
ond species. (The site remains polymorphic in the
present.) Finally, the estimate 2µstdiv is augmented
as in (17) by an estimate of the number of sites that
are fixed in the sample but polymorphic in the pop-
ulation.

The estimate (16) for the number of silent poly-
morphic sites fits the observed numbers quite well.
However, the predicted numbers of fixed differences
2µstdiv and (17) overstate, by factors of between
1.4 and 6.1, both the observed number of fixed dif-
ferences and the number of fixed differences pre-
dicted from the sample configurations. The up-
ward bias of this estimate probably reflects the fact
that not all of the new mutations destined to be-
come fixed have as yet become fixed. Based on
this argument, we propose that the total number
of silent fixed differences in terms of µs is approx-
imately the theoretical expression (17) divided by
1.4 for D. simulans vs. D. yakuba, and the ratio
of the number of replacement fixed differences to
silent fixed differences can be estimated by 1.4 times
the ratio of (18) to (17). Setting the latter expres-
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Table 9. Silent polymorphic sites and fixed differences
Obs. silenta Est. config.b Est. popn.c

Species µs tdiv fixed poly fixed poly fixed poly

sim. vs. yak. 2.05 5.81 17 21 16.0 19.9 24.8 21.8
mel. vs. yak. 1.85 7.08 18 21 17.5 20.5 26.9 22.4
mel. vs. sim. 2.07 1.24 1 21 2.0 19.6 6.1 21.9

a Regular silent sites only
b From the joint configuration probabilities (31)
c From (17) and (16)

sion equal to the observed ratio of replacement and
silent fixed differences yields the corrected estimate
µr = 0.0265 = 0.013µs of (2).

Selective constraints in Adh evolution. The
low value of the replacement mutation rate µr, rela-
tive to the silent mutation rate µs, may reflect mu-
tations occurring in only a small number of codons
at which a favorable amino acid change is possible,
with all other changes being strongly detrimental.
The actual mutation rate at this small number of
susceptible sites may be the same as at silent sites.
In the single-α model αi ≡ α1 for pooled data from
D. simulans and yakuba, the mutation rate from
one nucleotide to another is ν = α1/2 = 0.00465,
which suggests that the average number of codons
susceptible to a favorable amino acid change at any
one time is n = µr/ν = 0.0265/0.00465 = 5.7 out
of the 257 total codon positions available. In the
more general mutation model, the mutation rate de-
pends on the nucleotide produced by the mutation,
and the estimates ni = µr/(αi/2) = 2µr/αi range
from an average of 1.8 susceptible codons (for muta-
tions to C) to 23.1 susceptible codons (for mutations
to A).

Mutational Flux and Fixed Differ-
ences: Derivations
The purpose of this section is to derive the limit-
ing density of the processes {XN

i,k} in the frequency
interval [0, 1], and the limiting rate at which these
processes are fixed at the state 1. For each N ≥ 1,
let {XN

i,k} (i = 1, 2, . . .) be a sequence of Markov
chains on {0, 1/N, 2/N, . . . , 1} with the same tran-
sition matrix. Assume that one of these processes
starts at XN

i,0 = 1/N with probability vN > 0 in
each time step. The endpoints 0, 1 are assumed to

be absorbing states for the Markov chains. Given
the initial states xN = j/N → x, the processes
{XN

k = XN
i,k} are assumed to satisfy the conditions

lim
N→∞

NE
(
XN

k+1 − XN
k

∣∣ XN
k = xN

)
= c(x)

lim
N→∞

NE
(
(XN

k+1 − XN
k )2

∣∣ XN
k = xN

)
= b(x)

lim
N→∞

NE
(|XN

k+1 − XN
k |2+δ

∣∣ XN
k = xN

)
= 0

(32)
uniformly for 0 ≤ x ≤ 1 for some δ > 0, where
b(x) and c(x) are continuous functions on [0, 1].
Let dm(x) and s(x) be the speed measure and scale
function of the diffusion operator

Lx =
1
2
b(x)

d2

dx2
+ c(x)

d

dx

(see equation (4)), and assume that the endpoints
0, 1 are accessible boundaries for Lx (or for the
limiting diffusion process Xt). All of these condi-
tions hold for the two-allele selection-and-drift hap-
loid Wright-Fisher models discussed earlier (Ewens

1979).
The probability vN that a new process {XN

i,k}
begins in any time step is assumed to satisfy

vN ∼ µ

N P (T N
a+ < T N

0 )
(
s(a) − s(0)

) as N → ∞
(33)

where T N
a+ = min{k : XN

k ≥ a} and a > 0 (0 < a ≤
1) is arbitrary. In fact, condition (33) is independent
of a for 0 < a ≤ 1 (see below). If the condition
P (T N

a+ < T N
0 ) ∼ P (Ta < T0 | X0 = 1/N) holds as

N → ∞ for Tt = min{t : Xt = a} and s′(0) = 1,
then (33) is equivalent to vN → µ.

At equilibrium for fixed N , the expected num-
ber of processes {XN

i,k} at the state x for 0 < x < N
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is given by

BN (x) = vN

∞∑
k=0

P (XN
k,k = x) = vN

∞∑
k=0

P (XN
k = x)

(34)
where k in (34) represents a time k generations in
the past. If f(x) is a function on [0, 1] with f(0) =
f(1) = 0, then the expected number of processes
{XN

i,k} in the open interval (0, 1), weighted by f(x)
where x is the present frequency, is

N−1∑
j=1

f(j/N)BN (j/N) = vN

∞∑
k=0

QN
k f(1/N)

where QN
k f(x) = E

(
f(XN

k )
∣∣ XN

0 = x
)
. Our first

result is the limit theorem

Theorem 1. Suppose under the above assump-
tions that f(x) is continuous on [0, 1] and that
f(x) = 0 in the interval [0, a) for some a > 0. Then

lim
N→∞

N−1∑
j=1

f(j/N)BN (j/N)

= lim
N→∞

vN

∞∑
k=0

QN
k f(1/N)

=
∫ 1

0

µ
s(1) − s(x)
s(1) − s(0)

f(x) dm(x) (35)

where s(x) is the scale and dm(x) the speed measure
of the limiting diffusion.

It follows from (35) that the limiting expected
number of processes {XN

i,k} with frequencies in the
range p1 ≤ p ≤ p2 is the integral of the integrand
on the right-hand side of (35) over (p1, p2), provided
that p1, p2 are points of continuity for dm(x). In
fact, the limiting distribution of {XN

i,k} is a Poisson
random field with this integrand as its mean density
(see the next section).

Proof of Theorem 1. We first show that condition
(33) is independent of a. If 0 < 1/N < a < 1, then
XN

k must first cross a before getting to 1. This leads
to the identity

P (T N
1 < T N

0 ) (36)

= P (T N
a+ < T N

0 )E
(
P (T N

1 < T N
0 | XN

0 = Y )
)

for Y = XN
` , where ` = T N

a+ is the first time at
which the frequency XN

` ≥ a. For any fixed y < 1,

lim
N→∞

P (T N
1 < T N

0 | XN
0 = y) (37)

= P (T1 < T0 | X0 = y) =
s(y) − s(0)
s(1) − s(0)

(Ewens 1979; Ethier and Kurtz 1986). It follows
from (37) and (32) that the “overshoot” in (36) can
be neglected as N → ∞; i.e., it is sufficient to take
Y = a in (36). Hence by (36) and (37)

P (T N
a+ < T N

0 )
(
s(a) − s(0)

)
∼ P (T N

1 < T N
0 )

(
s(1) − s(0)

)

as N → ∞ for 0 < a < 1, and the condition (33) is
independent of a > 0. In particular, if

P (T N
1 < T N

0 ) ∼ P (T1 < T0 | X0 = 1/N)

=
s(1/N) − s(0)

s(1) − s(0)
∼ 1

N

s′(0)
s(1) − s(0)

then (33) implies that vN → µ/s′(0).
Similarly, for a > 0 in Theorem 1, before any

of the processes {XN
i,k} get to x ≥ a, they must first

cross a. Thus the sum in (35) equals

vN P (T N
a+ < T N

0 )E
( ∞∑

k=0

QN
k f(Y )

)

∼ µ

s(a) − s(0)
1
N

∞∑
k=0

QN
k f(a)

(38)

by (33), where Y = XN
` for ` = T N

a+ ≥ a as before,
since we can neglect the overshoot in (38) for the
same reasons as in (36). Now by (32) and Trotter’s
Theorem (Ethier and Kurtz 1986)

lim
N→∞

QN
k f(xN ) = Qtf(x) = E

(
f(Xt)

∣∣ X0 = x
)

(39)
uniformly for k/N → t and xN → x. Thus, if we
can show that the sum in (38) converges uniformly
in N for k/N ≥ C, then as N → ∞

1
N

∞∑
k=0

QN
k f(a) →

∫ ∞

0

Qtf(a) dt

=
(
s(a) − s(0)

)∫ 1

a

s(1) − s(x)
s(1) − s(0)

f(x) dm(x)
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(Ewens 1979) since f(x) ≡ 0 for x < a. Since this
completes the proof of (35), it remains only to prove
that the sum in (38) converges uniformly in N for
k/N ≥ C.

Since the endpoints 0, 1 are accessible exit
boundaries for Lx or {Xt}, we can choose t > 0
and δ > 0 such that

max
0≤x≤1

P (T0 ∧ T1 ≥ t | X0 = x) = 1 − δ < 1

where X ∧ Y = min{X, Y }. However, by (39) with
f(x) ≡ 1,

lim
N→∞

P (T N
0 ∧ T N

1 ≥ k | XN
0 = xN )

= P (T0 ∧ T1 ≥ t | X0 = x)

uniformly for k/N → t > 0 and xN → x. Thus
there exists constants C > 0 and δ > 0 such that

sup
N

max
0≤j≤N

P (T N
0 ∧ T N

1 ≥ CN | XN
0 = j/N)

≤ 1 − δ/2 < 1
(40)

The Markov property implies that if CN in (40) is
replaced by mCN , then the right-hand side of (40)
can be replaced by (1 − δ/2)m. Thus there exists
some ν > 0 such that if |f(x)| ≤ M for 0 ≤ x ≤ 1,

|QN
k f(x)| ≤ MP (T N

0 ∧ T N
1 ≥ k | XN

0 = x)

≤ MΩe−νk/N

for some constant Ω. This provides the necessary
uniformity in (38).

We now compute the limiting flux into the ab-
sorbing state 1. In any one time step, the proba-
bility that a new process XN

i,k is begun with XN
i,0 =

1/N and is then eventually is absorbed at 1 is

vNP (T N
1 < T N

0 ) ∼ 1
N

µ

s(1) − s(0)

by (33) with a = 1. Since one time unit in the
diffusion time scale equals N discrete time steps,
we have shown

Theorem 2. Under the above conditions, the lim-
iting expected number of processes {XN

i,k} that are
absorbed at 1 in one time unit in the diffusion time
scale is

µ

s(1) − s(0)

Poisson Random Fields and a Sam-
pling Theory for Independent Sites

Since the {XN
i,k} are independent Markov processes

that arrive in a limiting Poisson stream, the lim-
iting distribution of the frequencies {XN

i,k} form a
Poisson random field by classical arguments (Kar-

lin and McGregor 1966, Sawyer 1976, Karlin

and Taylor 1981). In particular, the limiting dis-
tribution of the numbers of frequencies {XN

i,k} in
any given set, as well as the number of processes
that have been fixed at 1 by any given time, are
Poisson random variables that are independent for
nonoverlapping sets.

Given a sample of size m, the population fre-
quencies {XN

i,k} of mutant nucleotides at those sites
that are polymorphic in the sample form a “ran-
domly censored” version of the original Poisson ran-
dom field, where a process is “censored” if its site is
monomorphic in the sample. If the censoring mecha-
nism is independent for different sites (which follows
in this case from linkage equilibrium), then the cen-
sored random field is also a Poisson random field. In
particular, given a sample of size m, the numbers of
silent and replacement fixed and polymorphic sites
all have Poisson distributions.

Similar arguments show that, if one has two
or more random censoring mechanisms that are in-
dependent for different sites but mutually exclusive
(i.e., a site cannot survive censoring by more than
one mechanism), then the respective censored ran-
dom fields are independent Poisson random fields.
As one example, given a sample of size m, the num-
ber of monomorphic sites in the sample and the
number of polymorphic sites in the sample are in-
dependent Poisson random variables. In this exam-
ple, a site is censored by the first mechanism if it is
polymorphic in the sample and censored by the sec-
ond mechanism if it is monomorphic in the sample.
(The number of sites that are fixed in the popula-
tion form a separate independent Poisson class.) It
follows from this that, if one has samples of sizes
m and n from two populations, then the number of
fixed differences between the two samples and the
number of sites that are polymorphic in either sam-
ple are realizations of independent Poisson random
variables.

As a second example, given a sample of size 5
from a single population, the number of sites that
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display a “(32)” polymorphism (i.e., with three se-
quences having one nucleotide and two sequences
having a second nucleotide) and the number of sites
that display a “(41)” polymorphism (i.e., with four
sequences having one nucleotide and one sequence
with a second nucleotide) are independent Poisson
random variables. Here the censoring mechanisms
are to reject a site if it does not have a (32) (respec-
tively (41)) nucleotide polymorphism in the sam-
ple, where the mutant nucleotide could be either
nucleotide.

Discussion and Additional Comments

The approach to polymorphism and divergence pre-
sented in this paper provides a framework for the
quantitative analysis and interpretation of DNA se-
quence variation within and between species. It
also provides a theoretical basis for the use of a
recently proposed 2 × 2 contingency table test for
DNA sequences that compares polymorphisms and
fixed differences with silent sites and amino acid re-
placements (McDonald and Kreitman 1991a), as
well as providing estimates for the relevant param-
eters. Hypothesis tests for 2 × 2 contingency table
data are well understood and quite robust, and this
approach may be the most powerful and generally
applicable test yet devised for detecting whether or
not selection has been active in the recent evolution-
ary history of particular proteins.

One the other hand, the sample nucleotide con-
figurations also contain a tremendous amount of
information that can be interpreted as in the ap-
proach presented here. In particular, the joint sam-
ple configurations at silent sites can be used to esti-
mate both the synonymous mutation rate µs and
the species divergence time tdiv. Both parame-
ter estimates are scaled in terms of the effective
population size Ne, and if independent informa-
tion is available (as it is in this case from Hawaiian
Drosophila), then all three parameters can be esti-
mated. Given tdiv, the 2× 2 contingency table pro-
vides estimates of µr/µs (the ratio of aggregate mu-
tations rates for synonymous and replacement sites)
and for γ (the average selection coefficient among
favored and mildly deleterious replacement muta-
tions). Our analysis is based on the assumption that
the nucleotide sites are independent (i.e., in linkage
equilibrium). Whether this assumption holds to an

acceptable approximation has to be determined by
appropriate statistical tests on a case by case basis.

Other approaches to the analysis of DNA se-
quence variation within and between species were
suggested as alternatives to the 2×2 contingency ta-
ble test by Graur and Li (1991) and Whittam and
Nei (1991). These tests appear to be less powerful
statistically than the 2 × 2 contingency table test,
and may be subject to objections about their under-
lying genetic assumptions (McDonald and Kreit-

man 1991b). Furthermore, the test statistics in the
proposed alternatives are assumed to have a sam-
pling distribution that is normal, when in fact the
sampling distributions are unknown in most cases.
As one example, Graur and Li (1991) compare the
observed number (k = 2) of replacement polymor-
phisms within all three species in McDonald and
Kreitman’s (1991a) data with the value of a test
statistic K = K1 + K2 + K3 (our notation), where
each Ki is the number of segregating sites in an in-
finite sites model (Watterson 1975). Separate pa-
rameter estimates are used within each species, and
the random variables Ki are independent. Wat-

terson (1975) gives the mean and variance of Ki in
terms of its parameters. Watterson also gives a mo-
ment generating function for Ki that can be used to
infer its exact distribution (as a sum of independent
geometrically distributed random variables with dif-
ferent parameters), from which the exact one-sided
P-value P (K ≤ 2) can be calculated. For one set
of parameter values used by Graur and Li (1991),
K = 10.32±4.04 (mean and standard deviation), so
that a normal approximation for K leads to a one-
sided P-value P = 0.020 for the observed K = 2,
while the exact P (K ≤ 2) = 0.00981 from the the-
oretical distribution. In this example the difference
in the P-values is only twofold, but it is in the direc-
tion of making the Graur and Li statistic less pow-
erful, and the discrepancy might be larger in other
cases. Similar problems arise for a test proposed
by Whittam and Nei (1991), which is based on a
ratio of test statistics each of whose sampling dis-
tributions is known only approximately. For ratio
statistics, there is no guarantee that approximate
P-values will even be conservative. In general, one
should be careful about using a normal approxima-
tion for P-values unless one is sure that the sampling
distribution of the test statistic is at least approxi-
mately normally distributed.
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