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Statistical Tests for Gene Conversion

Stanley Sawyer

Gene conversion is any process that causes a segment
of DNA to be copied onto another DNA segment, or
else appears to act in this way.

Some possible biological causes are:
• Homologous recombination
• Mosaicism in viruses

Gene conversion can involve unexpressed (or junk)
DNA only, or a segment containing several genes.

Gene conversion is an important cause of the spread of
• pathogenicity
• antibiotic resistance
• vaccine resistance

in bacteria and viruses.

How can we detect gene conversion from data, specifi-
cally from an aligned set of DNA or protein sequences?
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An example alignment:

10 20 30 40

K GCAG AGTGCTATAACAAGAACG GTA CCGGTGTATCTA ATGT

2 GCAG AGGGCTTTAACTTCTACG TTA GGGGTGTTTCTA ATGT

3 ACAC AACGCTGTAACTAGAAAG TTA GGGGTGTGTCTG GCGT

4 GCAC AGGGCTTTAACTTCTACG GTA CCGGTGTTTCTG GCGT

5 ACAC ACAGCTATAACATCTAAG GTA CCGGTGTATCTG GCGT

6 GCAC ATGGCGGTAACAAGTTCG GTA TTGGAATCTCTT ACAT

The pair of boxes is an inner fragment, suggesting an
event in the ancestry of the 6 sequences. This amounts
to a run of 18 matched sites in an alignment of length 41.
The single box is an outer fragment, suggesting an exte-
rior event.

We discard sites that are monomorphic in the entire align-
ment:

10 20 30 40

K GG GTTAAAGAAC G CCTGAA ATG

2 GG GGTTTTCTAC T GGTGTA ATG

3 AC ACTGTAGAAA T GGTGGG GCG

4 GC GGTTTTCTAC G CCTGTG GCG

5 AC CATAATCTAA G CCTGAG GCG

6 GC TGGGAAGTTC G TTAACT ACA



3

10 20 30 40

K GG GTTAAAGAAC G CCTGAA ATG

2 GG GGTTTTCTAC T GGTGTA ATG

3 AC ACTGTAGAAA T GGTGGG GCG

4 GC GGTTTTCTAC G CCTGTG GCG

5 AC CATAATCTAA G CCTGAG GCG

6 GC TGGGAAGTTC G TTAACT ACA

We now have a run of length 10 in an alignment of length
22. We have two ways of calculating the statistical sig-
nificance of this run, a runs test and a permutation test.

For the runs test for the paired boxes, we note there
are 7 differences out of 22 between sequences 2 and 4,
so that the probability of a run of length 10 or longer
starting at offset 3 is p(1 − p)10 = 0.00691 for p=7/22.
However, there are 13 possible starting points for runs of
length 10 or more, leading to a “multiple-test” corrected
P = 0.1046.

The permutation test carries out 10,000 random per-
mutations of the 22 columns in the last alignment, and
asks what proportion of these permutations has at least
one run of length 10 or longer between sequences 2 and
4 starting at any offset. This gives a probability of
P = 0.0399. Other runs with different starting random-
number seeds gave P = 0.0382 and P = 0.395.
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A second example alignment:

10 20 30 40

K GCAG AGTGCTATAACAAGAACGGTACCGGTGT ATCTAATGG

2 GCAG AGGGCTTTAACTTGAACGGTAGCGGTGT CTCTAATGG

3 ACAC AACGCTGTAACTAGAAAGTTAGGGGTGT GTCTGGCGG

4 GCGC AGGGCTTTAACTTGAGCGGTAGCGGTGT TTAAGGCAT

5 AACC ACAGCT ATAACATCTA AGTTACCAATGT ATCTGGCGG

6 GCAC ATGGCGGTAACAAGTGCGGTATTGGAAT CTCTTACAG

The two boxes span offsets 5–32 inclusively, but there is
a single mismatch at offset 20. Neither of the fragments
on either side is significant by either the runs test (P =
0.196) nor the permutation test (P = 0.120). The fact
that they are adjacent except for the mismatch suggests
that an old and highly significant gene conversion event
was punctuated by a later mutation.

ANOTHER CONCERN: Since there are 6 sequences, the
number of sequence pairs is 6(6−1)/2 = 15. A test proce-
dure with a false positive rate of 5% will make at least one
mistake 3/4 of the time if carries out 15 tests. A standard
multiple-test correction is to multiply all P-values by the
number of tests. If there were 60 aligned sequences, this
would involve multiplying P-values by 1770. However,
the permutation test is automatically multiple-test aware
for the length of the alignment, so that there may be bet-
ter ways.
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Questions:

• How can later mutations be handled? Can one
assign mismatch penalties for different pairs of
sequences and calculate P-values for high-scoring
(rather than merely long) fragments?

• Can lengths or scores be scaled across differ-
ent sequence pairs to give reasonable multiple-
comparison-corrected P-values? At the same time,
can mismatch penalties be coordinated in a rea-
sonable way? (NOTE: Fragments between closely-
related pairs of sequences in an alignment will have
fewer differences and longer inner fragments, while
a shorter fragment between a more distantly-related
sequence pair may have highly-significant shorter
fragments.)

• Can we avoid permutations? These can be VERY
time consuming with a large number of sequences
and polymorphisms. Is there a simple, easily ap-
plied approximation for pairwise P-values, with or
without mismatch penalties?
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For a given pair of sequences, assume we can score
all sequence matches at aligned sites as 1 and mis-
matches as −m and score each inner fragment as the
sum of these match or mismatch scores. (We allow
m = ∞, which reduces to the case of runs with scores
as fragment lengths.)

How can we find the highest-scoring fragments ef-
ficiently?

More importantly, how can we find probabilities or
approximate P-values for high-scoring fragments?

Fortunately, a similar problem has come up before
in queueing theory:
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A problem in queueing theory:

Suppose that customers arrive at a bank on the
average of nc customers per week. The single teller is
very busy, but whenever he/she gets near the teller’s
window, then he/she serves m customers at once. The
teller wanders near the teller’s window around d times
per week, on the average. We assume d < nc but
md > nc. (If md < nc, the line at the teller’s window
will increase without limit.)

Given nc, d, and m, what is the distribution of
the maximum queue length over a year? What is the
probability that the line will ever stretch out into the
street?

Each new customer increases the line by one, and
each act by the teller reduces it by m. When the line
length becomes zero or negative, the process starts
over. There are approximately n = 52(nc + d) events
per year, where an event is an arrival (customer or
teller). Of the events, p = d/(nc + d) correspond to
mismatches and the line length drops by m. Thus the
distribution of the longest queue length over a year is
exactly the same as the distribution of the maximum
fragment score for an alignment with n = 52(nc + d)
polymorphic sites.
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A Theorem from Queueing Theory:

Assume that we have a pair of sequences with
• n polymorphic sites (in the alignment)
• the two sequences differ at d ≤ n sites
• score 1 for a match, −m for a mismatch
• md > n − d (the sequence itself has a negative

score).

Consider random sequences of length n such that sites
are different with probability p = d/n and the sites
are independent. Let Scorei be the largest score for
any subsegment of the first i sites. Then, there exist
constants λ = λ(p,m) and K = K(p,m) such that

lim
n→∞

Pr

(
max

1≤i≤n
Scorei − log(nK)

λ
≥ x

)
(1)

= 1− exp(− exp(−λx)) (2)

≈ exp(−λx) if λx À 1

This holds if the mismatch penalty m is not an integer.
If m is an integer, then the ratio of (1) and (2) oscillates
between positive limits defined by K− < K+. If K =
K+, then (2) is conservative for large n.
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Extreme-value-distribution approximations:

In particular, this says that

max
1≤i≤n

Scorei ≈ A log n + B

where A = 1/λ and B = log K/λ.

This result is due to Iglehart (1972) and Karlin,
Dembo, and Kawabata (1990), extending earlier work
of Spitzer and others. Karlin and Altschul (1990) and
Altschul et al (1990) used Iglehart’s results for compu-
tationally efficient pattern-matching results for DNA
and protein sequences, which became the widely-used
BLAST scores for protein matches.

It has been said that someone sends a DNA or pro-
tein sequence to the National Library of Medicine server
for a BLAST search of stored databases on the average
of once every 3 seconds, so that Iglehart’s result may
be one of the most widely-used theorems in probability
theory.

Karlin and Dembo (1992) have a nice mathemati-
cal treatment of these approximate P-values, and also
extend the results to Markov-dependent scores.
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Notes:

• This assumes that all matches should have the
same positive score = 1, and that all mismatches
should have the same negative score = −m. In protein
search algorithms (a protein is a chain of amino acids),
mismatches of amino acids with similar chemical prop-
erties are given a small positive score, and mismatches
for two amino acids that have very different chemical
properties are given higher penalties.

• The literature (Karlin and Altschul, 1990; Kar-
lin, Dembo, and Kawabata, 1990) suggests that scores
with a given mismatch penalty m will be most powerful
for detecting fragments with a mismatch density that
depends on m, n, and d.

This means that scores with different mismatch
penalties will be more powerful for detecting gene con-
version events of different ages. This is unfortunate,
since it means that the same score is not optimal for
detecting all gene conversion events.
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An Almost-Proof of the Formula:
The formula is:

lim
n→∞

Pr

(
max

1≤i≤n
Scorei − log(nK)

λ
≥ x

)
(1)

= 1− exp(− exp(−λx)) (2)

Since mp > 1−p by assumption, we can view MaxScore
as the maximum of ne ≈ nC excursions of the running
score into positive values.

These excursions will be approximately exponen-
tially distributed with some mean µ. Let L =
max1≤i≤ne Xi for ne independent exponentially dis-
tributed random variables Xi with E(Xi) = µ, so that
L ≈ max1≤i≤n Scorei. Then

Pr(L ≤ t) ≈ Pr(Xi ≤ t)ne ≈ (
1− exp(−t/µ)

)ne

Set t = tn = µ log ne + x = µ log(nC) + x. Then

lim
n→∞

Pr(L ≤ tn) ≈
(

1−
(

1

nC

)
exp(−x/µ)

)nC

≈ exp
(− exp(−x/µ)

)

This implies (2) with λ = 1/µ and K = C.
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Mismatch penalties:

For a particular pair of sequences, the score of a
fragment with possible mismatches is the number of
matches at polymorphic sites minus a penalty times
the number of mismatches. A significant fragment is a
fragment with a significantly high score.

For different sequence pairs, mismatch penalties
should be inversely proportional to the number of se-
quence differences. That is, the higher the propor-
tion of sequence differences, the lower the mismatch
penalty.

To be specific, we will scale

m = int

(
gscale ∗ n + d− 1

d

)

(so that m ≈ gscale∗n/d and md > n−d if gscale ≥ 1)
where

• n is the number of sites that are polymorphic in the
alignment and the two sequences differ at d ≤ n
sites,

• “gscale”= 1, 2, 3, . . . is a parameter.
• “gscale”= 1 means the lowest penalties. “gscale”=
∞ means that mismatches are prohibited.

This allows us to define mismatch penalties consistently
across an alignment.
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Remarks:

• The queueing-theory approximation applies to
pairwise P-values rather than global or multiple-test
aware P-values. The obvious generalizations for global
P-values can be very conservative in some cases.

• In comparing or ranking significant fragments
across different sequence pairs, the lengths or raw
scores of fragments should not be compared directly.
The longest fragments will be between the most closely
related sequences. This can miss highly significant (but
shorter) fragments between pairs of sequences with a
denser set of sequence differences.

• Define Kscore = λ ∗MaxScore− log(nK)
Then the approximation is

Pr(MaxScore ≥ x) ≈ 1− exp(− exp(−Kscore))

≈ exp(−Kscore) if Kscore À 1

The expression Kscore can be used to define a global
score for permutation tests that is not biased against
sequence pairs with larger numbers of differences.
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BLAST-like Test Results (Gscale = 1)

Larger alignments can be handled using the approx-
imate P-values, and in addition P-values smaller than
1/10,000 can be estimated:

Number of
Data set (Gscale = ∞) Seqs. Bases Polys Frags1 P-val.2

Gemini virus 64 3309 1468 61 < 10−14

Cauliflower mosaic virus 7 8110 856 4 < 10−4

Human γ globins 3 1763 65 2 < 10−6

Maize actin gene 8 1008 364 2 < 10−4

Number of
Data set (Gscale = 1) Seqs. Bases Polys Frags1 P-val.2

Gemini virus 64 3309 1468 427 < 10−19

Cauliflower mosaic virus 7 8110 856 4 < 10−5

Human γ globins 3 1763 65 2 < 10−6

Maize actin gene 8 1008 364 1 < 10−4

1 – Number of inner global P < 0.05 (in terms of Kscore)

Overlapping fragments are ignored.

2 – Smallest global inner P-value (BLAST-like P-value)
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Thank you for coming.


