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Likelihoods and Likelihood Ratio Tests for
Nested Hypotheses:

General framework:
H1: Model with n1 parameters
H0: Model with n0 parameters

Assume H0 ⊆ H1 and n0 < n1

Are the extra parameters necessary?
Does H1 fit the data significantly better than H0?

Easy example:
Toss a coin 100 times, get 61 heads, 39 tails.
H1: Coin has Pr(H) = p for unknown p
H0: Coin is fair: That is, p = 0.50
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(Toss a coin 100 times, get 61 heads, 39 tails.)

This is not a very interesting example of a nested
hypothesis framework since we can easily test
H0 : p = 0.50 using the Central Limit Theorem:

Z =
Binom(n, p)− np√

np(1− p)
≈ Norm(0, 1)

For p = 0.50 and n = 100:

Zobs =
61− 50√

100/4
= 2.20

Therefore we can reject H0 : p0 = 0.50 with the two-
sided P-value:

P = P (|Z| ≥ 2.20) = 0.0278 < 0.05
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Harder example:

Suppose that we observe for 1000 nucleotides
from one strand of DNA:

(A)212 (T)219 (C)253 (G)316

In particular, this implies:
(AT)431 (CG)569

so that the strand appears CG-rich, but does the data
show (within) AT or CG strand bias? Can we test

H0 : pA = pT and pC = pG ?

This is a nested hypothesis test with
H1: 3 free parameters (pA, pT , pC)
H0: 1 free parameter pA

since pG = 1− pA − pT − pC , and for H0:
pA =pT , pC =pG , pA + pA + pC + pC = 1.

Can we develop a general theory for testing
nested hypotheses?
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We go through four steps:

I. Likelihoods of H0 and H1: Let LH1(p,X) be the
probability of observing counts X, assuming for sim-
plicity in a particular order , so that

LH1(p,X) = pA
nA pT

nT pC
nC pG

nG

without any combinatorial coefficients.

II. Define the maximum likelihood estimator (MLE)
p̂ = p̂(X) of p = (pA, pT , pC , pG) (for H1) as the
solution of

max
p

LH1(p,X) = LH1

(
p̂(X), X

)

Since

log LH1(p, X) = nA log pA + · · ·+ nG log pG
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This is the same as solving

∂

∂pA
log L1(p, X) =

pA

nA
− pG

nG
= 0

since pG = 1 − pA − pT − pC and ∂
∂pA

pG = −1.
Similarly

∂

∂pT
log L1(p, X) =

pT

nT
− pG

nG
= 0

∂

∂pC
log L1(p, X) =

pT

nC
− pG

nG
= 0

From this it follows that the MLEs are the sample pro-
portions

p̂A =
nA

n
, p̂T =

nT

n
, p̂C =

nC

n
, p̂G =

nG

n
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III. We find the estimated likelihood of the data X for
models H1 and H0: Our best guess for the likelihood
of X for H1 is then

L̂(H1, X) = LH1(p̂1(X), X)

=
(nA

n

)nA
(nT

n

)nT
(nC

n

)nC
(nG

n

)nG

By the same arguments, the estimated likelihood of X
for H0 is

L̂(H0, X) = LH1(p̂0(X, H0), X)

=

(
nA + nT

2n

)nA+nT
(

nC + nG

2n

)nC+nG

IV. Finally, let d be the difference between the num-
bers of parameters in H1 and H0. In our case,
d = 3− 1 = 2.
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Then, the likelihood ratio test (LRT) of H0 is to com-
pare

Q = 2 log

(
L̂(H1, X)

L̂(H0, X)

)
≈ χ2

d

where here d = 2. That is, the P-value is
P = Pr

(
χ2

d ≥ Qobs

)
. In our case,

log L̂(H1, X) = 212 log

(
212

1000

)
+ 219 log

(
219

1000

)

+ 253 log

(
253

1000

)
+ 316 log

(
316

1000

)

= −1373.190

log L̂(H0, X) = 431 log

(
431

2000

)
+ 569 log

(
569

2000

)

= −1376.742
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Thus

Q = 2 log

(
L̂(H1, X)

L̂(H0, X)

)

= 2
(
log L̂(H1, X)− log L̂(H0, X)

)

= 2(1376.742− 1373.190) = 7.1034

The P-value is

P = P (χ2
2 ≥ 7.1034) = 0.0287 < 0.05

and we reject H0: The data does show significant evi-
dence for strand asymmetry between A and T and/or
between C and G, for data

(A)212 (T)219 (C)253 (G)316

and

(AT)431 (CG)569
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Bayesian Analysis and Conjugate Priors:

Example: Toss a coin n = 10 times. Let X be the
number of heads (0 ≤ X ≤ 10). How should we es-
timate p = Pr(Head)? Here, the likelihood and MLE
are:

L(p,X) = pX(1− p)10−X , p̂(X) =
X

10

What if X = 0? What should p̂(X) be in that case?

The problem may be that we are treating p and X
differently (as a parameter and a random variable, re-
spectively):

We might have a better idea of how to handle odd
questions such as this if we could put p and X somehow
on the same footing. (Or, at least, that was Bayes’
original idea.)
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The first step is to force p to be a random variable by
saying that it has a probability distribution π0(p) for
0 ≤ p ≤ 1. This is called a prior distribution for p.

The prior distribution π0(p) makes p into a random
variable. Then (p,X) together have the joint probabil-
ity distribution

π1(p,X) = π0(p)L(p, X) = π0(p) pX(1− p)10−X

Finally, we notice that X is constant (because we have
just observed it), so that we can form the posterior
(conditional) distribution

π1(p | X) =
π0(p)L(p,X)∫ 1

0
π0(x)L(x,X) dx
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We can use the posterior distribution π1(p | X) to
define the Bayes estimator

p̂B(X) =

∫ 1

0

pπ1(p, X) dp =

∫ 1

0
pπ0(p)L(p,X) dp∫ 1

0
π0(p)L(p,X) dp

Note that p̂B(X) makes sense even if X = 0, but
depends on π0(p). Also, we should be careful when
we use this method, since we may end up having to
evaluation not only one, but two nasty integrals. In
contrast, finding MLEs only requires derivatives but not
integrals.

Example: π0(p) = 1. Then the full likelihood is

π1(p,X) = π0(p)L(p,X) = pX(1− p)10−X

so that the posterior distribution is

π1(p | X) = C(X)pX(1− p)10−X
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Note that, as a function of p, the posterior density

π1(p | X) = C(X)pX(1− p)10−X

≈ Beta(X + 1, 11−X)

where Beta(α, β) is the beta distribution with density

Γ(α + β)

Γ(α)Γ(β)
pα−1(1− p)β−1

Since

E
(
Beta(α, β)

)
=

α

α + β

it follows that

p̂B(X) =

∫ 1

0

pπ1(p | X) dp

=
X + 1

12

In particular, if X = 0, p̂B(0) = 1/12.
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This argument generalizes: Suppose we chose, instead,
π0(p) = Cp(1− p) or Cp5(1− p)5 or, in general

π0(p) = Cpα−1(1− p)β−1

Then the full likelihood is

π1(p,X) = π0(p)L(p, X)

= Cpα−1(1− p)β−1pX(1− p)10−X

= Cpα+X−1(1− p)β+10−X−1

≈ Beta(α + X,β + 10−X)

and

p̂B(X) = E
(
Beta(α + X,β + 10−X)

)

=
X + α

α + β + 10
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This is a special case of a general situation:

Consider a general family of distributions, for example
Beta(α, β) or Gam(α, β) or Norm(µ, σ2).
Let π0(p, α, β) be a general prior distribution from that
family.

Then, we say that this family is a conjugate prior (fam-
ily) for the likelihood L(p,X) if we always have that

π1(p, α, β | X) = π0(p, α, β)L(p,X)

= π0(p, α1, β1)

is a member of the same family, where α1 = α(X) and
β1 = β(X) are called updating formulas for α and β.
(These can also depend on other constants in L(p, X).)

Note that here π0(p, α, β) is a density in p, while
L(p,X) is a density in X.
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In our case, the posterior density π1(p | X) is

Cpα−1(1− p)β−1 pX(1− p)10−X

= Cpα+X−1(1− p)β+10−X−1

so that the beta distribution family is a conjugate
prior for binomial sampling. The updating formulas
are α1(X) = α + X and β1(X) = β + 10−X.

This generalizes to multinomial sampling:

Recall that a distribution on the simplex (p1, p2, p3, p4)
(that is, pi ≥ 0 and p1 + p2 + p3 + p4 = 1)
is a Dirichlet distribution D(α1, α2, α3, α4) if

π0(p) = Cpα1−1
1 pα2−1

2 pα3−1
3 pα4−1

4

where

C =
Γ(α1+α2+α3+α4)

Γ(α1)Γ(α2)Γ(α3)Γ(α4)
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Suppose that we do n independent multinomial trials
and obtain, in some order,

ni outcomes of Type i (prob. pi each)

for i = 1, 2, 3, 4. Then the likelihood is

L(p,X) = pn1
1 pn2

2 pn3
3 pn4

4

for X = (n1, n2, n3, n4). If we multiply L(p,X) by the
Dirichlet prior D(α1, α2, α3, α4), we obtain the poste-
rior distribution

π0(p) = Cpα1+n1−1
1 pα2+n2−1

2 pα3+n3−1
3 pα4+n4−1

4

which is D(α1 + n1, α2 + n2, α3 + n3, α4 + n4).

This means that the family of Dirichlet distributions
are a conjugate prior for multinomial sampling.
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In this case, since

E(pi) =
αi

α1 + α2 + α3 + α4

for a Dirichlet D(α1, α2, α3, α4), we have

E(pi | X) =
αi + ni

α1 + α2 + α3 + α4 + n

for the posterior distribution. If the αi are small, this
is close to the MLE p̂i(X) = ni/n.

As another example, suppose that X1, X2, . . . , Xn are
independent Poisson random variables. Then the like-
lihood is

L(µ, X1, . . . , Xn) =
n∏

i=1

(
e−µ µXi

Xi!

)

= C(X)e−nµµS(X), S(X) =
n∑

i=1

Xi
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The MLE for µ is

µ̂(X) =
S(X)

n
= X

Again, we may not want to estimate µ̂(X) = 0
if X = 0, so we consider a prior distribution for µ.
Since µ satisfies 0 ≤ µ < ∞ rather than 0 ≤ p ≤ 1,
we can’t use a beta distribution for the prior. However,
the gamma density

π0(µ, α, β) =
βα

Γ(α)
µα−1 exp(−βµ)

is defined for 0 ≤ µ < ∞. The posterior distribution
of µ is then proportional to

π0(µ, α, β)L(µ,X)

= C(X)µα−1 exp(−βµ) e−nµµS(X)

= C(X)µα+S(X)−1 exp(−(β + n)µ)
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As a function of µ, the posterior distribution
π1(µ, α, β | X) is then Gam(α + S(X), β + n).

This means that the gamma distributions are a conju-
gate prior for Poisson sampling.

Since the mean of Gam(α, β) is α/β, the Bayes esti-
mator of µ is

p̂B(X) = E
(
Gam(α + S(X), β + n)

)
=

α + S(X)

β + n

This is close to p̂(X) = X = S(X)/n if α, β are small.

It is typical to set π0(µ) = Gam(ε, ε) for ε = 0.001.
This distribution has mean one but, due to the µε−1

singularity at µ = 0, has the vast majority of its mass
very close to 0. For this prior,

p̂B(0) =
ε

ε + n
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As another example, suppose that X1, X2, . . . , Xn are
independent exponentially distributed random variables
where r is the rate (E(Xi) = 1/r). The likelihood is

L(r,X1, . . . , Xn) =
n∏

i=1

(
r exp(−rXi)

)

= rn exp(−rS(X)), S(X) =
n∑

i=1

Xi

If we use a gamma distribution prior for r

π0(r, α, β) = Crα−1e−βr, r ≥ 0

then the posterior density is

C(X) π0(r, α, β)L(r,X)

= C(X) rα−1 exp(−βr) rne−rS(X)

= C(X) rα+n−1 exp
(−(

β + S(X)
)
r
)

≈ Gam
(
α + n, β + S(X)

)
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The Bayes estimator of r is then

r̂B(X) = E
(
Gam(α + n, β + S(X))

)
=

α + n

β + S(X)

If α, β are small, this is close to the MLE
r̂(X) = 1/X = n/S(X).

Thus the gamma distribution family is a conjugate prior
for both Poisson and exponential sampling, but the role
of n and S(X) are reversed in the updating formulas:

For Poisson sampling:

π1(µ, α, β | X) ≈ Gam
(
α + S(X), β + n

)

while for exponential sampling:

π1(r, α, β | X) ≈ Gam
(
α + n, β + S(X)

)
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In most of the examples before, a likelihood with a
single parameter

p for Bernoulli sampling
µ for Poisson sampling
r for exponential sampling

had a conjugate prior with two parameters (Beta(α, β)
or Gam(α, β)). There are also conjugate priors for the
Gaussian disitribution

L(µ, σ2, X) =
1√

2πσ2
e−(1/2σ2)(X−µ)2

that have four parameters (two for µ and two for σ2).
The first step is to rewrite the Gaussian density L in
terms of the precision v = 1/σ2:

L(µ, v,X) =

√
v

2π
e−(1/2)v(X−µ)2
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Note that

L(µ, v,X) =

√
v

2π
e−(1/2)v(X−µ)2

is Gam
(
3/2, (1/2)(X − µ)2

)
as a function of v. The

simplest way to obtain priors for v and µ is to define
priors for v and µ separately:

π0(v, αε, βε) ≈ Gam(αε, βε) in v

= Cvαε−1e−βεv

π0(µ, µε, vε) ≈ Norm(µε, vε) in µ

= C exp
(−(1/2)vε(µ− µε)

2
)

for four parameters αε, βε, µε, vε, where we ignore fac-
tors that don’t depend on v or µ. As before, the initial
parameters αε, βε, µε, vε will be small, but will become
larger after conditioning on data.
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For one observations X ≈ Norm(µ, v) for precision v,

π1(v, αε, βε | X, µ)

= Cvαε−1e−βεv

√
v

2π
e−(1/2)v(X−µ)2

≈ Gam
(
αε + 1/2, βε + (1/2)(X − µ)2

)

π1(µ, µε, vε | X, v)

= Ce−(1/2)vε(µ−µε)
2
e−(1/2)v(X−µ)2

= C exp

(
−(1/2)(vε + v)

(
µ− vεµε + vX

vε + v

)2
)

≈ Norm

(
vεµε + vX

vε + v
, vε + v

)

There are several different ways of setting up conjugate
priors for normal sampling. This is the simplest, but not
necessarily the best.
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These formulas leads to the updating formulas for
X ≈ Norm(µ, v):

For v: αε → αε + 1/2

βε → βε + (1/2)(X − µ)2

For µ: µε → vε

vε + v
µε +

v

vε + v
X

vε → vε + v

This generalizes to a formula for updating (αε, βε, µε, vε)
for a normal sample X1, . . . , Xn:

For v: αε → αε + n/2

βε → βε + (1/2)
n∑

i=1

(Xi − µ)2

For µ: µε → vε

vε + vn
µε +

nv

vε + nv
X

vε → vε + vn
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Thank you for coming.


