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Notice that we can say that A ⇔ B is true only when both
A⇒ B and B ⇒ A are true. An examination of the truth
table reveals that A⇔ B is true precisely when A and B are
either both true or both false. Thus A⇔ B means precisely
that A and B are logically equivalent. One is true when and
only when the other is true. One is false when and only when the
other is false.
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Example

The statement
x > 0⇔ 2x > 0

is true. For if x > 0, then 2x > 0; and if 2x > 0, then x > 0.
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Example

The statement
x > 0⇔ x2 > 0

is false. For x > 0⇒ x2 > 0 is certainly true, while
x2 > 0⇒ x > 0 is false ((−3)2 > 0 but −3 6> 0).
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Example

The statement

{∼ (A ∨ B)} ⇔ {(∼ A) ∧ (∼ B)} (∗)

is true because the truth table for ∼( A ∨ B) and that for
(∼ A) ∧ (∼ B) are the same. Thus they are logically equivalent:
one statement is true precisely when the other is. Another way
to see the truth of (∗) is to examine the truth table for the full
statement:

A B ∼ (A ∨ B) (∼ A) ∧ (∼ B) {∼ (A ∨ B)} ⇔ {(∼ A) ∧ (∼ B)}
T T F F T
T F F F T
F T F F T
F F T T T
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Given an implication

A ⇒ B,

the contrapositive statement is defined to be the implication

∼ B ⇒ ∼ A.

The contrapositive is logically equivalent to the original
implication, as we see by examining their truth tables:
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A B A⇒ B

T T T
T F F
F T T
F F T
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and

A B ∼ A ∼ B (∼ B)⇒ (∼ A)

T T F F T
T F F T F
F T T F T
F F T T T

Steven G. Krantz Math 310 September 18, 2020 Lecture



Quantifiers

Example

The statement

If it is raining, then it is cloudy.

has, as its contrapositive, the statement

If there are no clouds, then it is not raining.

A moment’s thought convinces us that these two statements say
the same thing: if there are no clouds, then it could not be
raining; for the presence of rain implies the presence of clouds.
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The main point to keep in mind is that, given an
implication A⇒ B, its converse B ⇒ A and its contrapositive
(∼ B)⇒ (∼ A) are entirely different statements. The converse
is distinct from, and logically independent from, the original
statement. The contrapositive is distinct from, but logically
equivalent to, the original statement.

Some classical treatments augment the concept of modus
ponendo ponens with the idea of modus tollendo tollens. It is in
fact logically equivalent to modus ponendo ponens. Modus
tollendo tollens says

If ∼ B and A⇒ B then ∼ A.

It is common to abbreviate modus ponendo ponens by modus
ponens and modus tollendo tollens by modus tollens.
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Modus tollens actualizes the fact that (∼ B)⇒ (∼ A) is
logically equivalent to A⇒ B. The first of these implications is
of course the contrapositive of the second.
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The mathematical statements that we will encounter in
practice will use the connectives “and,” “or,” “not,” “if-then,”
and “iff.” They will also use quantifiers. These two basic
quantifiers are “for all” and “there exists.”
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Example

Consider the statement

All automobiles have wheels.

This statement makes an assertion about all automobiles. It is
true because every automobile does have wheels.

Compare this statement with the next one:

There exists a woman who is blonde.

This statement is of a different nature. It does not claim that
all women have blonde hair—merely that there exists at least
one woman who does. Since that is true, the statement is true.
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Example

Consider the statement

All positive real numbers are integers.

This sentence asserts that something is true for all positive real
numbers. It is indeed true for some positive numbers, such as 1
and 2 and 193. However, it is false for at least one positive
number (such as 1/10 or π), so the entire statement is false.
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Here is a more extreme example:

The square of any real number is positive.

This assertion is almost true—the only exception is the real
number 0: 02 = 0 is not positive. But it only takes one
exception to falsify a “for all” statement. So the assertion is
false.

This last example illustrates the principle that the negation
of a “for all” statement is a “there exists” statement.
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Example

Look at the statement

There exists a real number which is greater than 5.

In fact, there are lots of numbers that are greater than 5; some
examples are 7, 42, 2π, and 97/3. Other numbers, such as 1, 2,
and π/6, are not greater than 5. Since there is at least one
number satisfying the statement, the assertion is true.
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Example

Consider the statement

There is a man who is at least 10 feet tall.

This statement is false. To verify that it is false, we must
demonstrate that there does not exist a man who is at least 10
feet tall. In other words, we must show that all men are shorter
than 10 feet.

The negation of a “there exists” statement is a “for all”
statement.
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A somewhat different example is the sentence

There exists a real number x which satisfies the equation

x3 − 2x2 + 3x − 6 = 0 .

There is in fact only one real number that satisfies the equation,
and that is x = 2. Yet that information is sufficient to show
that the statement true.
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We often use the symbol ∀ to denote “for all” and the
symbol ∃ to denote “there exists.” The assertion

∀x , x + 1 < x

claims that for every x , the number x + 1 is less than x . If we
take our universe to be the standard real number system, then
this statement is false. The assertion

∃x , x2 = x

claims that there is a number whose square equals itself. If we
take our universe to be the real numbers, then the assertion is
satisfied by x = 0 and by x = 1. Therefore, the assertion is true.
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In all the examples of quantifiers that we have discussed
thus far, we were careful to specify our universe. That is, “There
is a woman such that . . . ” or “All positive real numbers are
. . . ” or “All automobiles have . . . ”. The quantified statement
makes no sense unless we specify the universe of objects from
which we are making our specification. In the discussion that
follows, we will always interpret quantified statements in terms
of a universe. Sometimes the universe will be explicitly
specified, while other times it will be understood from context.

Quite often we will encounter ∀ and ∃ used together. The
following examples are typical:
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Example

The statement
∀x ∃y , y > x

claims that for any number x there is a number y that is
greater than it. In the realm of the real numbers, this is true.
In fact, y = x + 1 will always do the trick.

The statement
∃x ∀y , y > x

has quite a different meaning from the first one. It claims that
there is an x that is less than every y . This is absurd. For
instance, x is not less than y = x − 1.

Steven G. Krantz Math 310 September 18, 2020 Lecture



Quantifiers

Example

The statement
∀x ∀y , x2 + y2 ≥ 0

is true in the realm of the real numbers: it claims that the sum
of two squares is always greater than or equal to zero. [This
statement happens to be false in the realm of the complex
numbers. We shall learn about that number system later. When
we interpret a logical statement, it will always be important to
understand the context, or universe, in which we are working.]

The statement

∃x ∃y , x + 2y = 7

is true in the realm of the real numbers: it claims that there
exist x and y such that x + 2y = 7. Certainly the numbers
x = 3, y = 2 will do the job (although there are many other
choices that work as well).
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We conclude by noting that ∀ and ∃ are closely related. The
statements

∀x , A(x) and ∼ ∃x , ∼ A(x)

are logically equivalent. The first asserts that the statement
A(x) is true for all values of x . The second asserts that there
exists no value of x for which A(x) fails, which is the same thing.
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Likewise, the statements

∃x ,B(x) and ∼ ∀x , ∼ B(x)

are logically equivalent. The first asserts that there is some x
for which B(x) is true. The second claims that it is not the case
that B(x) fails for every x , which is the same thing. The books
[HALM] and [GIH] explore the algebraic structures inspired by
these quantifiers.
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The assertions

∀x ,A(x)⇔∼ ∃x ,∼ A(x)

and
∃x ,B(x)⇔∼ ∀x ,∼ B(x)

are commonly referred to as de Morgan’s Laws. You should
compare them with the de Morgan Laws that we discussed in
an earlier lecture.
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It is worth noting explicitly that ∀ and ∃ do not commute.
That is to say,

∀x∃y ,F (x , y) and ∃y∀x , F (x , y)

do not say the same thing. We invite you to provide a
counterexample.

A “for all” statement is something like the conjunction of a
very large number of simpler statements. For example, the
statement

For every nonzero integer n, n2 > 0 .

is actually an efficient way of saying that 12 > 0 and (−1)2 > 0
and 22 > 0, etc. It is not feasible to apply truth tables to “for
all” statements, and we usually do not do so.
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A “there exists” statement is something like the disjunction
of a very large number of statements (the word “disjunction” in
the present context means an “or” statement). For example,
the statement

There exists an integer n such that P(n) = 2n2 − 5n + 2 = 0 .

is actually an efficient way of saying that P(1) = 0 or
P(−1) = 0 or P(2) = 0, etc. It is not feasible to apply truth
tables to “there exist” statements, and we usually do not do so.

Steven G. Krantz Math 310 September 18, 2020 Lecture



Quantifiers

It is common to say that first-order logic consists of the
connectives ∧, ∨, ∼, ⇒, ⇐⇒ , the equality symbol =, and the
quantifiers ∀ and ∃, together with an infinite string of variables
x , y , z , . . . , x ′, y ′, z ′, . . . and, finally, parentheses ( , , ) to keep
things readable (see [BAR, p. 7]). The word “first” here is used
to distinguish the discussion from second-order and higher-order
logics. In first-order logic, the quantifiers ∀ and ∃ always range
over elements of the domain M of discourse. Second-order logic,
by contrast, allows us to quantify over subsets of M and
functions F mapping M ×M into M. Third-order logic treats
sets of function and more abstract constructs. The distinction
among these different orders is often moot.
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