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Let us look back at the ideas of this chapter and comment
on the difference between truth and provability.

An elementary statement such as

A = “George is tall.”

has a truth value assigned to it. It is either true or false. From
the point of view of mathematics, there is nothing to prove
about this statement. Likewise for the statement

B = “Barbara is wise.”
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On the other hand, the statement

A ∨ B.

is subject to mathematical analysis. Namely, it is true if at
least one of A or B is true. Otherwise it is false.

Any statement that is true regardless of the truth value of
its individual components is called a tautology. An example of a
tautology is

B ⇒
(
A∨ ∼ A

)
.

This statement is true all the time—regardless of the truth
values of A and B. Set up a truth table to satisfy yourself that
this is the case.
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Another example of a tautology is(
A⇒ B

)
⇔

(
∼ A ∨ B

)
.

Again, you may verify that this is a tautology by setting up a
truth table.

So we have two ways to think about whether a certain
statement is valid all the time: (i) to substitute in all possible
truth values, and (ii) to prove the statement from elementary
first principles. We have seen two examples of (i). Now let us
think about method (ii).
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In order to provide an example of a provable statement, we
must isolate in advance what are the syllogisms that we assume
in advance to be true, and what rules of logic are allowed. In a
formal treatment of logic, such as [SUP] or [STO], we would
begin on page 1 of the book with these syllogisms and rules of
logic and then proceed rigidly, step by step. At each stage, we
would have to check which rule or syllogism is being applied.
The present book is not a formal treatment of logic. It is in fact
a more intuitive approach. For the remainder of the section,
however, we lapse into the formal mode so that we may learn
more carefully to distinguish truth from provability.

Steven G. Krantz Math 310 September 21, 2020 Lecture



First, which rules of logic do we allow? There is only one:
modus ponendo ponens is the only rule of logic (this is the rule
that A⇒ B together with A entails B). Now the other
assumptions are these: for the present discussion we take ∼ and
∨ as our only primitive connectives. Then

N1 A⇒ B is an abbreviation for ∼ A ∨ B.

N2 A ∧ B is an abbreviation for ∼ (∼ A∨ ∼ B).

Axiom 1 (C ∨ C )⇒ C

Axiom 2 C ⇒ (C ∨ B)

Axiom 3 (C ∨ B)⇒ (B ∨ C )

Axiom 4 (B ⇒ A)⇒
(
[C ∨ B]⇒ [C ∨ A]

)
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Notice that Axioms 1–4 are all “intuitively obvious.” Any
good axiom should have this feature, because we do not verify
or prove axioms. The axioms are our starting place; nothing
comes before the axioms. We just accept them. For example,
let us think about Axiom 2: If we assume that C is true, then
it is certainly the case that C ∨B is true. In this way, we satisfy
our intuition that Axiom 2 is a reasonable axiom. You may
check the other axioms for yourself using similar reasoning.

In some more formal treatments, additional rules of logic are
enunciated. The Axiom of Substitution (Axiom Schema of
Replacement) is also an important rule of logical reasoning. We
shall say more about it later.
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In a formal treatment of proof theory (see [BUS, p. 5 ff.]),
we sometimes specify—in addition to modus ponens—a system
of logical axioms that allow the inference of “self-evident”
tautologies from no hypotheses. One such system is this (see
[BUS]):

(i) p ⇒ (q ⇒ p)

(ii) (p ⇒ q)⇒ [(p ⇒∼ q)⇒∼ p]

(iii) (p ⇒ q)⇒ [(p ⇒ (q ⇒ r))⇒ (p ⇒ r)]

(iv) (∼∼ p)⇒ p

(v) p ⇒ (p ∨ q)

(vi) (p ∧ q)⇒ p

(vii) q ⇒ (p ∨ q)

(viii) (p ∧ q)⇒ q

(ix) (p ⇒ r)⇒ [(q ⇒ r)⇒ ((p ∨ q)⇒ r)]

(x) p ⇒ [q ⇒ (p ∧ q)]
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together with two axiom schemes for the quantifiers:

(xi) A(t)⇒ ∃x ,A(x)

(xii) ∀x ,A(x)⇒A(t)

and two quantifier rules of inference:

(xiii) [C ⇒A(x)]⇒ [C ⇒ ∀x ,A(x)]

(xiv) [A(x)⇒ C ]⇒ [∃x ,A(x)⇒ C ]
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We refer to axioms (i)–(x) as F , in honor of Gottlob Frege
(1848–1925). It is a remarkable fact that F is complete in the
sense that any tautological statement of the propositional
calculus can be proved using F .

For the purposes of the present book, modus ponendo ponens
will be the primary rule of reasoning. The reader can safely
worry about no others. Any assertion that we assert to be
provable must be derivable, using the logical rule modus
ponendo ponens, from our notational conventions and these
axioms. As an illustration, let us prove the statement
∼ (B∧ ∼ B). [Note that you can easily check this with a truth
table; so it is a tautology. But now we want to prove it from (i)
our definitions, (ii) our axioms, and (iii) our rules of logic.]
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Now N2 above shows that the statement that we wish to
prove is just ∼ B ∨ B. [We have used here the logical
equivalence of ∼∼ B and B. The details of this equivalence are
left to you.] It is more natural to prove this statement since our
axioms are formulated in terms of the connective ∨. Here is our
proof:

(1) (B ∨ B)⇒ B by Axiom 1
(2) [(B ∨ B)⇒ B]⇒

([∼ B ∨ [B ∨ B]]⇒ [∼ B ∨ B]) by Axiom 4
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(3) ([∼ B ∨ [B ∨ B]]⇒ [∼ B ∨ B]) by modus
ponendo ponens
applied to (1), (2)

(4) (B ⇒ (B ∨ B))⇒ (B ⇒ B) applying N1 to (3)
(5) B ⇒ (B ∨ B) by Axiom 2
(6) B ⇒ B by modus

ponendo ponens
applied to (4), (5)

(7) ∼ B ∨ B applying N1 to (6)

That completes the proof.
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Implicit in this last discussion is the question of why we can
restrict attention to just the connectives ∼ and ∨. In fact, all
the other connectives can be expressed in terms of just these
two. As an instance, A ∧ B is logically equivalent to
∼ (∼ A∨ ∼ B). Likewise, A⇒ B is logically equivalent with
(∼ A) ∨ B. These statements can be checked with truth tables.
It can also be shown that ∼ and ∧ can be used to generate all
the other connectives. Some combinations are not possible: ∨
and ∧ cannot be used to form a statement that is equivalent
with ∼. Again, you can use truth tables to confirm this
assertion.
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It is natural to ask, and we raised this question implicitly in
an earlier lecture, whether every tautology is provable (that
every provable statement is a tautology is an elementary
corollary of our logical structure, or see [STO, p. 152]). That
this is so is Frege’s theorem. This statement is summarized by
saying that elementary sentential logic is complete.

In fact Gödel (1906–1978) proved in 1930 that the so-called
first-order predicate calculus is complete. The first-order
predicate calculus is essentially the logic that we have described
in the present chapter: it includes elementary connectives, the
quantifiers ∀ and ∃, and statements P with one or more (but
finitely many) variables x1, . . . , xk . Thus, according to Gödel,
any provable statement in this logic is true and, more
profoundly, any true statement is provable. Gödel went on to
construct a model for any consistent system of axioms.
Interestingly, his proof requires the Axiom of Choice.
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Gödel’s more spectacular contribution to modern thought is
that, in any logic that is complex enough to contain arithmetic,
there are sensible statements that cannot be proved either true
or false. More precisely, there are true statements that cannot
be proved; and there are false statements that cannot be
disproved. For example, Peano’s arithmetic contains statements
that cannot be proved either true or false. A rigorous discussion
of this celebrated “incompleteness theorem” is beyond the scope
of the present book. Suffice it to say that Gödel’s proof consists
of making an (infinite) list of all provable statements,
enumerating with a system of “Gödel numbers”, and then
constructing a new statement that differs from each of these.
Since the constructed statement could not be on the list, it also
cannot be provable. For further discussion of Gödel’s ideas, see
[DAV], [NAN], [SMU].
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Theoretical computer scientists have shown considerable
interest in the incompleteness theorem. For a computer lang-
uage—even an expert system—can be thought of as a logical
theory. Gödel’s theorem says, in effect, that there will be
statements formulable in any sufficiently complex language that
cannot be established through a sequence of logical steps from
first principles. For more on this matter, see [KAR], [SCH],
[STO].
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Kurt Gödel (1906–1978)

Kurt Gödel had quite a happy childhood. He had rheumatic fever when
he was six years old, but after he recovered life went on much as before.

Gödel entered the University of Vienna in 1923 still without having
made a definite decision whether he wanted to specialize in mathematics or
theoretical physics.

Gödel completed his doctoral dissertation under Hahn’s supervision in
1929 submitting a thesis proving the completeness of the first order
functional calculus. He became a member of the faculty of the University of
Vienna in 1930.
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Gödel is best known for his proof of “Gödel’s Incompleteness
Theorems.” He proved fundamental results about axiomatic systems,
showing in any axiomatic mathematical system there are propositions that
cannot be proved or disproved within the axioms of the system.

Now 1933 was the year that Hitler came to power. At first this had no
effect on Gödel’s life in Vienna; he had little interest in politics. In 1934
Gödel gave a series of lectures at Princeton. However, Gödel suffered a
nervous breakdown as he arrived back in Europe. He was treated by a
psychiatrist and spent several months in a sanatorium.

Despite the health problems, Gödel’s research was progressing well and
he proved important results on the consistency of the axiom of choice with
the other axioms of set theory in 1935.
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He visited Göttingen in the summer of 1938, lecturing there on his set
theory research. He returned to Vienna and married Adele Porkert in the
autumn of 1938.

In 1940 Gödel arrived in the United States, becoming a U.S. citizen in
1948 (in fact he believed he had found an inconsistency in the United
States Constitution, but the judge had more sense than to listen during his
interview!). He was on the faculty of the Institute for Advanced Study from
1940 until his death. One of Gdel’s closest friends at Princeton was Albert
Einstein. They each had a high regard for the other and they spoke
frequently.

He received the Einstein Award in 1951, and the National Medal of
Science in 1974. He was a member of the National Academy of Sciences of
the United States, a fellow of the Royal Society, a member of the Institute
of France, and a fellow of the Royal Academy.
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Towards the end of his life Gödel became convinced that he was being
poisoned and, refusing to eat to avoid being poisoned, essentially starved
himself to death.
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