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Aristotelian logic dictates that every sensible statement has
a truth value: TRUE or FALSE. If we can demonstrate that a
statement A could not possibly be false, then it must be true.
On the other hand, if we can demonstrate that A could not be
true, then it must be false. Here is a dramatic example of this
principle. In order to present it, we shall assume for the
moment that you are familiar with the system Q of rational
numbers. These are numbers that may be written as the
quotient of two integers (without dividing by zero, of course).
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Theorem: [Pythagoras] There is no rational number x with the
property that x2 = 2.

Steven G. Krantz Math 310 September 25, 2020 Lecture



Proof by Contradiction

Proof: In symbols, our assertion may be written

∼
(
∃x , (x ∈ Q ∧ x2 = 2)

)
.

Seeking a contradiction, we assume the statement to be false.
Then what we are assuming is that

∃x , (x ∈ Q ∧ x2 = 2). (∗)

Since x is rational, we may write x = p/q, where p and q are
integers.
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We may as well suppose that both p and q are positive and
nonzero. After reducing the fraction, we may assume that it is
in lowest terms—so p and q have no common factors.

Now our hypothesis asserts that

x2 = 2

or (
p

q

)2

= 2.

We may write this out as

p2 = 2q2. (∗∗)

Observe that this equation asserts that p2 is an even number.
But then p must be an even number (p cannot be odd, for that
would imply that p2 is odd). So p = 2r for some natural
number r .
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Substituting this assertion into equation (∗∗) now yields that

(2r)2 = 2q2.

Simplifying, we may rewrite our equation as

2r2 = q2.

This new equation asserts that q2 is even. But then q itself
must be even.

We have proven that both p and q are even. But that
means that they have a common factor of 2. This contradicts
our starting assumption that p and q have no common factor.

Steven G. Krantz Math 310 September 25, 2020 Lecture



Proof by Contradiction

Let us pause to ascertain what we have established: the
assumption that a rational square root x of 2 exists, and that it
has been written in lowest terms as x = p/q, leads to the
conclusion that p and q have a common factor and hence are not
in lowest terms. What does this entail for our logical system?

We cannot allow a statement of the form C = A∧ ∼ A (in
the present context the statement A is “x = p/q in lowest
terms”). For such a statement C must be false.
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But if x exists, then the statement C is true. No statement
(such as A) can have two truth values. In other words, the
statement C must be false. The only possible conclusion is that
x does not exist. That is what we wished to establish.

Remark: In practice, we do not include the last three
paragraphs in a proof by contradiction. We provide them now
because this is our first exposure to such a proof, and we want
to make the reasoning absolutely clear. The point is that the
assertions A and ∼ A cannot both be true. An assumption that
leads to this eventuality cannot be valid. That is the essence of
proof by contradiction.
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Historically, this last theorem was extremely important.
Prior to Pythagoras (∼300 B.C.E.), the ancient Greeks
(following Eudoxus) believed that all numbers (at least all
numbers that arise in real life) are rational. However, by the
Pythagorean theorem, the length of the diagonal of a unit
square is a number whose square is 2. And our theorem asserts
that such a number cannot be rational. We now know that
there are many nonrational, or irrational, numbers. In fact, in a
later lecture, we shall learn that, in a certain sense to be made
precise, “most” numbers are irrational.

Here is a second example of a proof by contradiction:

Theorem: [Dirichlet] Suppose that n + 1 pieces of mail are
delivered to n mailboxes. Then some mailbox contains at least two
pieces of mail.
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Proof: Seeking a contradiction, we suppose that the assertion
is false. Then each mailbox contains either zero or one piece of
mail. But then the total amount of mail in all the mailboxes
cannot exceed

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

In other words, there are at most n pieces of mail. That
conclusion contradicts the fact that there are n + 1 pieces of
mail. We conclude that some mailbox contains at least two
pieces of mail.
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The last theorem, due to Gustav Lejeune Dirichlet
(1805–1859), was classically known as the Dirichletscher
Schubfachschluss. This German name translates to “Dirichlet’s
drawer shutting principle.” Today, at least in this country, it is
more commonly known as “the pigeonhole principle.” Since
pigeonholes are no longer a common artifact of everyday life, we
have illustrated the idea using mailboxes.
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Example: Draw the unit interval I in the real line. Now pick 11
points at random from that interval (imagine throwing darts at
the interval, or dropping ink drops on the interval). Then some
pair of the points has distance not greater than 0.1 inch apart.
To see this, write

I = [0, 0.1] ∪ [0.1, 0.2] ∪ · · · [0.8, 0.9] ∪ [0.9, 1].

Here we have used standard interval notation. Think of each of
these subintervals as a mailbox. We are delivering 11 letters
(that is, the randomly selected points) to these ten mailboxes.
By the pigeonhole principle, some mailbox must receive two
letters.

We conclude that some subinterval of I , having length .1,
contains two of the randomly selected points. Thus, their
distance does not exceed 0.1 inch.
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Example: We shall prove by contradiction that there are
infinitely many prime numbers (this is an ancient result of
Euclid).

Recall that a prime number is a whole number, or integer,
greater than 1 which has no divisors except for 1 and itself. The
first several primes are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . . .

A natural number which is not prime is called composite. A
composite number will have nontrivial factors. For example,
18 = 2 · 3 · 3. In particular, a composite number will always be
divisible by a smaller prime.
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Now, seeking a contradiction, let us suppose that there are
only finitely many primes. Call them p1, p2, . . . , pk . Define

P = (p1 · p2 · p3 · · · · · pk) + 1 .

What can we say about the number P?
If we divide P by p1, then p1 goes evenly into the product,

and there is a remainder of 1. If we divide P by p2, then p2 goes
evenly into the product, and there is a remainder of 1. And so
it goes for the rest of the pj . Now P is either prime or
composite. But we just checked every known prime—p1, p2,
. . . , pk—and verified that none of them is a divisor of P. So P
cannot be composite. We conclude that P is prime.
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But this is a contradiction, because P is a prime that is
evidently larger than each of the pj . We had an exhaustive list
of the primes, and now we have created one more. That is a
contradiction. We conclude that there are infinitely many
primes.

Example: We shall show that there are no positive integer
solutions to the equation x2 − y2 = 1. [Such an equation—a
polynomial equation for which we seek integer solutions—is
called a diophantine equation. This in honor of the ancient
Greek mathematician Diophantus (∼ 200 C.E.–∼ 284 C.E.).]
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Seeking a contradiction, we suppose that our diophantine
equation does have integer solutions x , y . We write

1 = x2 − y2 = (x − y) · (x + y) .

Thus either both x − y = 1 and x + y = 1 or else x − y = −1
and x + y = −1. In the first case, we can add the two equations
to solve them and find that x = 1, y = 0. This contradicts the
assumption that both x and y are positive. In the second case,
we again can add the two equations and find that x = −1,
y = 0. Again, we contradict the assumption that x and y are
positive.

Either case leads to a contradiction. We conclude that the
diophantine equation cannot have a solution.
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Example: We shall show that the sum of a rational number and
an irrational number is always irrational.

Seeking a contradiction, we assume the contrary. So let q be
a rational number and α an irrational number such that q + α
is rational. So there is a rational number p with

q + α = p .

But then we have
α = p − q .

Surely the difference of two rational numbers is rational, so we
have an irrational number equaling a rational number. That is
a contradiction.
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