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Other Methods of Proof

We give here a number of examples that illustrate proof
techniques other than direct proof, proof by contradiction, and
mathematical induction.

One obvious but powerful method for constructing a proof is
to divide the question into cases. We illustrate with some
examples.
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Example

Let us show that every integer n which is a perfect cube is
either (i) a multiple of 9, (ii) one less than a multiple of 9, or
(iii) one more than a multiple of 9.

We consider three cases:

1. The integer n is the cube of a multiple of 3. So

n = (3j)3 = 27j3 = 9 · (3j3) .

In this case, it is clear that n is a multiple of 9.

2. The integer n is the cube of one less than a multiple of 3.
Hence

n = (3j − 1)3 = 27j3 − 27j2 + 9j − 1 = 9(3j3 − 3j2 + j)− 1 .

So we see that n is one less than a multiple of 9.
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3. The integer n is the cube of one more than a multiple of 3.
Therefore

n = (3j + 1)3 = 27j3 + 27j2 + 9j + 1 = 9(3j3 + 3j2 + j) + 1 .

It is clear then that n is one more than a multiple of 9.
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The three cases we have considered exhaust all the
possibilities. So our proof is complete.
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Example

We shall show that, if n is an integer, then

3n2 + n + 14

is even. We divide into cases.

1. If n is even, then n = 2k for some integer k . Thus

3n2 + n + 14 = 3(2k)2 + (2k) + 14

= 12k2 + 2k + 14

= 2(6k2 + k + 7) .

We see immediately that 3n2 + n + 14 is even.
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2. If n is odd, then n = 2k + 1 for some integer k . Thus

3n2 + n + 14 = 3(2k + 1)2 + (2k + 1) + 14

= 3(4k2 + 4k + 1) + (2k + 1) + 14

= 12k2 + 12k + 3 + 2k + 1 + 14

= 12k2 + 14k + 18

= 2(6k2 + 7k + 9) .

We see immediately that 3n2 + n + 14 is even.
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In both cases, which are exhaustive, our expression
3n2 + n + 14 is even. That completes the proof.

Example

We now verify the triangle inequality, which says that

|x + y | ≤ |x |+ |y |

for any real numbers x and y . [We note here that |a| ≤ α if and
only if −α ≤ a ≤ α. This fact will prove useful in the reasoning
below.] To do so we divide the argument into cases:
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Case 1: x ≥ 0 and y ≥ 0. In this case

|x + y | = x + y = |x |+ |y | .

So our assertion is obvious.

Case 2: x ≥ 0 and y < 0. In this case, we have

x + y ≤ x + (−y) = |x |+ | − y | = |x |+ |y | . (∗)

Furthermore,

−(x + y) = −x + (−y) ≤ x + (−y) = |x |+ | − y | = |x |+ |y | .

Hence
x + y ≥ −(|x |+ |y |) . (∗∗)
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Combining (∗) and (∗∗) now gives

|x + y | ≤ |x |+ |y | .

Case 3: x < 0 and y ≥ 0. This case is identical to Case 2 (with
the roles of x and y switched), and we omit the details.

Case 4: x < 0 and y < 0. Then

x + y ≤ (−x) + (−y) = |x |+ |y | .

Also
−(x + y) = (−x) + (−y) = |x |+ |y | .

In conclusion,
|x + y | ≤ |x |+ |y | .
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Combining all the cases—which certainly cover all the
possibilities—we conclude that

|x + y | ≤ |x |+ |y | for all x and y .
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Example

Let us show that there exist irrational numbers a and b such
that ab is rational.

Let α =
√
2 and β =

√
2. If αβ is rational, then we are done,

using a = α and b = β. If αβ is irrational, then observe that(
αβ
)√2

= α[β·
√
2] = α2 = [

√
2]2 = 2 .

Thus, with a = αβ and b =
√
2 we have found two irrational

numbers a, b such that ab = 2 is rational.
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Proof by contraposition is closely related to proof by
contradiction. But there is a subtle difference. If we are trying
to prove that P ⇒ Q by contradiction, then we deny Q but it is
unclear what contradiction we are seeking. If we instead
attempt a proof by contraposition, then we seek to prove
∼ Q ⇒∼ P. We assume ∼ Q and our goal is to prove ∼ P. We
illustrate with some examples.
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Example

Let us show that, if n is an integer and n2 is even, then n is
even. We do so by contraposition. So suppose that n is odd.
We shall then show that n2 is odd.

The hypothesis then is that n = 2k + 1 for some integer k .
Then

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1 .

Thus we see explicitly that n2 is odd, and our result is proved.
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Example

We show that, if x , y are integers and x + y is even then x and
y have the same parity (i.e., either both are even or both are
odd). We do so by proof by contraposition.

So suppose that x and y do not have the same parity. So
one is even and one is odd. Say that x is even, so x = 2j for
some integer j , and y is odd, so y = 2m + 1 for some integer m.
Then x + y = (2j) + (2m + 1) = 2(j +m) + 1. In conclusion,
x + y is odd. That gives the result.
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Example

Let us prove that, if k is an integer and 3k + 1 is even, then k is
odd. We do so by contraposition. Assume that k is even. So
k = 2m for some integer m. Then

3k + 1 = 3(2m) + 1 = 2(3m) + 1 ,

which is clearly odd. That gives the result.
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Example

Show that if there are 23 people in a room, then the odds are
better than even that two of them have the same birthday.

Proof: Here by “same birthday” we mean birthday on the
same day of the year. For convenience we shall assume that a
year has 365 days.

The best strategy is to calculate the odds that no two of the
people have the same birthday, and then to take complements.
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Let us label the people p1, p2, . . . , p23. Then, assuming that
none of the pj have the same birthday, we see that p1 can have
his/her birthday on any of the 365 days in the year, p2 can then
have his/her birthday on any of the remaining 364 days, p3 can
have his/her birthday on any of the remaining 363 days, and so
forth. So the number of different ways that these 23 people can
all have different birthdays is

365 · 364 · 363 · · · 345 · 344 · 343 .

Steven G. Krantz Math 310 September 30, 2020 Lecture



Other Methods of Proof

On the other hand, the number of ways that birthdays could be
distributed (with no restrictions) among 23 people is

365 · 365 · 365 · · · 365︸ ︷︷ ︸
23 times

= 36523 .
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Thus the probability that these 23 people all have different
birthdays is

p =
365 · 364 · 363 · · · 343

36523
.

A quick calculation with a pocket calculator shows that
p ∼ 0.4927 < .5. We see that the odds that 23 people will all
have different birthdays is 0.4927. Thus the odds that at least
two of them will have the same birthday is 0.5073, which is
greater than one half. That is the desired result.
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Example

Show that if there are six people in a room, then either three of
them know each other or three of them do not know each other.
[Here three people know each other if each of the three pairs
has met. Three people do not know each other if each of the
three pairs has not met.]

Proof: The tedious way to do this problem is to write out all
possible “acquaintance assignments” for six people. That would
take a good deal of time and effort, and would be woefully
inelegant.

We now describe a more efficient, and more satisfying,
strategy. Call one of the people Bob. There are five others.
Either Bob knows three of them, or he does not know three of
them.
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Say that Bob knows three of the others. If any two of those
three are acquainted, then those two and Bob form a mutually
acquainted threesome. If no two of those three know each other,
then those three are a mutually unacquainted threesome.

Now suppose that Bob does not know three of the others. If
any two of those three are unacquainted, then those two and
Bob form an unacquainted threesome. If all pairs among the
three are instead acquainted, then those three form a mutually
acquainted threesome.

We have covered all possibilities, and in every instance come
up either with a mutually acquainted threesome or a mutually
unacquainted threesome. That ends the proof.
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It may be worth knowing that five people is insufficient to
guarantee either a mutually acquainted threesome or a mutually
unacquainted threesome. We leave it to the reader to provide a
suitable counterexample. It is quite difficult to determine the
minimal number of people to solve the problem when
“threesome” is replaced by “foursome.” When “foursome” is
replaced by five people, the problem is considered to be grossly
intractable. This problem is a simple example from the
mathematical subject known as Ramsey theory (see [GRS]).
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Example

Jill is dealt a poker hand of five cards from a standard deck of
52. What is the probability that she holds four of a kind?

Remark: In order to solve this problem we need to note the
following. If you want to choose k objects from among n
objects, then there are n ways to choose the first object, (n − 1)
ways to choose the second object, (n − 2) ways to choose the
third object, down to (n− k + 1) ways to choose the kth object.
And these objects can be chosen in any order. There are
k! = k · (k − 1) · (k − 2) · · · · · 3 · 2 · 1 ways to order k objects.
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In conclusion, the number of ways to select k objects from
among n is

n · (n − 1) · (n − 2) · · · · · (n − k + 1)

k · (k − 1) · (k − 2) · · · · · 3 · 2 · 1
=

n!

k!(n − k)!
.

This fraction occurs so frequently in mathematics that it is
denoted by the special symbol(

n

k

)
.
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Proof: If the hand holds four aces, then the fifth card is any
one of the other 48 cards. If the hand holds four kings, then the
fifth card is any one of the other 48 cards. And so forth. So
there are a total of

13× 48 = 624

possible hands with four of a kind. The total number of
possible five-card hands is(

52

5

)
= 2598960 .

Here we use the standard notation
(n
k

)
to denote the number of

ways to choose k objects from among n. It is known that(
n

k

)
=

n!

k!(n − k)!
.
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Therefore the probability of holding four of a kind is

p =
624

2598960
= 0.00024 .
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