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In what follows, we will consistently use some important
and universally recognized terminology. An infinite set S is said
to be countable if it has the same cardinality as the natural
number N. If an infinite set is not countable, that is if it does
not have a bijection with the natural numbers N, then it is said
to be uncountable. Every infinite set is either countable or
uncountable. One of our big jobs in this section of the book is
to learn to recognize countable and uncountable sets.
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Now it is time to look at some specific examples.

Example Let E be the set of all even integers and O the set of
all odd integers. Then

card(E) = card(O).

Indeed, the function
f (j) = j + 1

is a bijection from E to O.
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Example Let E be the set of even integers. Then

card(E) = card(Z) .

The function
g(j) = j/2

gives the bijection. Thus card(E) = card(Z).

Steven G. Krantz Math 310 October 23, 2020 Lecture



This last example is a bit surprising, for it shows that a set
(namely, Z, the integers) can be put in one-to-one
correspondence with a proper subset (namely E , the even
integers) of itself. In other words, Z has the same cardinality
(that is, the same number of elements) as a proper subset of
itself. This phenomenon is impossible for finite sets.
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Example We have

card(Z) = card(N).

We define the function f from Z to N as follows:

I f (j) = −(2j + 1) if j is negative

I f (j) = 2j + 2 if j is positive or zero

The values that f takes on the negative integers are 1, 3, 5, . . . ,
on the positive integers are 4, 6, 8, . . . , and f (0) = 2. Thus f is
one-to-one and onto.
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By putting together the preceding examples, we see that the
set of even integers, the set of odd integers, and the set of all
integers are countable sets.
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Example The set of all ordered pairs of positive integers

S = N× N = {(j , k) : j , k ∈ N}

is countable.

Steven G. Krantz Math 310 October 23, 2020 Lecture



To see this, we will use the Schroeder–Bernstein theorem.
The function

f (j) = (j , 1)

is a one-to-one function from N to S . Also, the function

g(j , k) = j · 10j+k + k

is a function from S to N. Let n be the number of digits in the
number k. Notice that g(j , k) is obtained by writing the digits
of j , followed by j + k − n zeros, then followed by the digits of k .
For instance,

g(23, 714) = 23 000 . . . 000︸ ︷︷ ︸
734

714,

where there are 23 + 714− 3 = 734 zeros between the 3 and the
7. It is clear that g is one-to-one. By the Schroeder–Bernstein
theorem, S and N have the same cardinality; hence S is
countable.
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There are other ways to handle the last example, and we
shall explore them in the exercises.

Since there is a bijection f of the set of all integers Z with
the set N, it follows from the last example that the set Z× Z of
all pairs of integers (positive and negative) is countable. Let f
be the function from the example that showed that Z is
countable. Then the map

(
f × f

)
(x , y) = (f (x), f (y)) is a

bijection of Z× Z to N× N. Let h be the bijection, provided by
the last example, from N× N to N. Then h ◦ (f × f ) is a
bijection of Z× Z to N.
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Notice that the word “countable” is a good descriptive
word: if S is a countable set, then we can think of S as having a
first element s1 (the one corresponding to 1 ∈ N), a second
element s2 (the one corresponding to 2 ∈ N), and so forth. Thus
we write S = {s1, s2, . . .}.

Definition A set S is called finite if it is either empty or else
there is a bijection of S with a set of the form In ≡ {1, 2, . . . , n}
for some positive integer n. If S is not empty and if no such
bijection exists, then the set is called infinite.
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Remark The empty set is a finite set, but not one of any
particular interest. Nevertheless we must account for it, so we
include it explicitly in the definition of “finite set.”

In some treatments, a different approach is taken to the
concepts of “finite” and “infinite” sets. In fact, one defines an
infinite set to be one which can be put in one-to-one
correspondence with a proper subset of itself. For instance, an
earlier example shows that the set Z of all integers can be put
in one-to-one correspondence with the set E of all even integers
(and of course E is a proper subset of Z). By contrast, a finite
set cannot be put in one-to-one correspondence with a proper
subset of itself. This last assertion amounts to verifying that Ik
cannot be put in one-to-one correspondence with In when k > n.
But any function f : Ik → In would be sending k letters to n
mailboxes. By the pigeonhole principle, two letters would have
to land in the same box. So the function cannot be one-to-one.
Thus Ik and In do not have the same cardinality.
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An important property of the natural numbers N is that any
subset S ⊂ N has a least element. See the discussion in an
earlier lecture and also later on. This is known as the
Well-Ordering Principle, and is studied in a course on logic. In
the present chapter, we take the properties of the natural
numbers as given (see our later treatment of the natural
numbers). We use some of these properties in the next
proposition.
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Proposition If S is a countable set and R is a subset of S , then
either R is empty or R is finite or R is countable.
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Proof: Assume that R is not empty.
Write S = {s1, s2, . . .}. Let j1 be the least positive integer

such that sj1 ∈ R. Let j2 be the least integer following j1 such
that sj2 ∈ R. Continue in this fashion. If the process terminates
at the nth step, then R is finite and has n elements.

If the process does not terminate, then we obtain an
enumeration of the elements of R :

1←→ sj1
2←→ sj2

. . .

etc.

All elements of R are enumerated in this fashion since j` ≥ `.
Therefore R is countable.
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A set is called countable if it is countably infinite, that is, if
it can be put in one-to-one correspondence with the natural
numbers N. A set is called denumerable if it is either empty or
finite or countable. In actual practice, mathematicians use the
word “countable” to describe sets that are either finite or
countable. In other words, they use the word “countable”
interchangeably with the word “denumerable.”
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The set Q of all rational numbers consists of all expressions

a

b
,

where a and b are integers and b 6= 0. Thus Q can be identified
with the set of all pairs (a, b) of integers. After discarding
duplicates, such as 2

4 = 1
2 , and using the earlier discussion to

the effect that Z× Z is countable, we find that the set Q is
countable. We shall deal with the rational number system in a
much more precise manner later on.
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Theorem Let S1,S2 be countable sets. Set S = S1 ∪ S2. Then S
is countable.
Proof: Let us write

S1 = {s11 , s12 , . . .}

S2 = {s21 , s22 , . . .}.

If S1 ∩ S2 = ∅, then the function
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skj 7→ (j , k)

is a bijection of S with a subset of {(j , k) : j , k ∈ N}. We proved
earlier that the set of ordered pairs of elements of N is
countable. By an earlier result, S is countable as well.

If there exist elements which are common to S1,S2, then
discard any duplicates. The same argument shows that S is
countable.
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Proposition If S and T are each countable sets, then so is

S × T = {(s, t) : s ∈ S , t ∈ T} .

Proof: Since S is countable, there is a bijection f from S to N.
Likewise there is a bijection g from T to N. Therefore the function

(f × g)(s, t) = (f (s), g(t))

is a bijection of S × T with N× N, the set of ordered pairs of
positive integers. But we saw in an earlier example that N× N is a
countable set. Hence so is S × T .
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Corollary If S1,S2, . . . ,Sk are each countable sets, then so is the
set

S1 × S2 × · · · × Sk = {(s1, . . . , sk) : s1 ∈ S1, . . . , sk ∈ Sk}

consisting of all ordered k-tuples (s1, s2, . . . , sk) with sj ∈ Sj.
Proof: We may think of S1 × S2 × S3 as (S1 × S2)× S3. Since
S1 × S2 is countable (by the Proposition) and S3 is countable,
then so is (S1 × S2)× S3 = S1 × S2 × S3 countable. Continuing in
this fashion (i.e., inductively), we can see that any finite product of
countable sets is also a countable set.
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Corollary The countable union of countable sets is countable.
Proof: Let A1,A2, . . . each be countable sets. If the elements of
Aj are enumerated as {aj

k}
∞
k=1 and if the sets Aj are pairwise

disjoint, then the correspondence

aj
k ←→ (j, k)

is one-to-one between the union of the sets Aj and the countable
set N× N. This proves the result when the sets Aj have no
common element. If some of the Aj have elements in common,
then we discard duplicates in the union and use the earlier
argument.
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