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Proposition The collection P of all polynomials p(x) with integer
coefficients is countable.
Proof: Let Pk be the set of polynomials of degree k with
integer coefficients. A polynomial p of degree k having integer
coefficients has the form

p(x) = p0 + p1x + p2x
2 + · · ·+ pkx

k ,

where the pj are integer constants. The identification

p(x)←→ (p0, p1, . . . , pk)

identifies the elements of Pk with the (k + 1)-tuples of integers.
By an earlier corollary, it follows that Pk is countable. But then
the next corollary implies that

P =
∞⋃
j=0

Pj

is countable.
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Definition Let x be a real number. We say that x is algebraic if
there is a polynomial p with integer coefficients such that
p(x) = 0.
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Example The number
√
2 is algebraic because it satisfies the

polynomial equation x2 − 2 = 0. The number
√
3 +
√
2 is also

algebraic. This assertion is less obvious, but in fact the number
satisfies the polynomial equation x4 − x2 + 1 = 0. The numbers
π and e are not algebraic, but this assertion is extremely
difficult to prove. We say that π and e are transcendental. In
the next proposition, we give an elegant method for showing
that most real numbers are transcendental without actually
saying what any of them are.

Steven G. Krantz Math 310 October 26, 2020 Lecture



Georg Cantor’s remarkable discovery is that not all infinite
sets are countable. We next give an example of this phenomenon.

In what follows, a sequence on a set S is a function from N
to S . We usually write such a sequence as s(1), s(2), s(3), . . . or
as s1, s2, s3, . . ..

Example There exists an infinite set which is not countable (we
call such a set uncountable). Our example will be the set S of
all sequences on the set {0, 1}. In other words, S is the set of all
infinite sequences of 0’s and 1’s.

Steven G. Krantz Math 310 October 26, 2020 Lecture



To see that S is uncountable, assume the contrary—that is,
we assume that S is countable. Then there is a first sequence

S1 = {s1j }∞j=1,

a second sequence
S2 = {s2j }∞j=1,

and so forth. This will be a complete enumeration of all the
members of S . But now consider the sequence T = {tj}∞j=1,
which we construct as follows:

I If s11 = 0 then set t1 = 1; if s11 = 1 then set t1 = 0;

I If s22 = 0 then set t2 = 1; if s22 = 1 then set t2 = 0;

I If s33 = 0 then set t3 = 1; if s33 = 1 then set t3 = 0;

. . .

I If s jj = 0 then set tj = 1; if s jj = 1 then set tj = 0;

etc.
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Now the sequence T = {tj} differs from the first sequence
S1 in the first element: t1 6= s11 .

The sequence T differs from the second sequence S2 in the
second element: t2 6= s22 .

And so on: the sequence T differs from the j th sequence S j
in the j th element: tj 6= s jj . So the sequence T is not in the set
S . But T is supposed to be in the set S because it is a sequence
of 0’s and 1’s and all of these are supposed to have been
enumerated in our enumeration of S .
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This contradicts our assumption, so S must be uncountable.

Example Consider the set of all decimal representations of
numbers strictly between 0 and 1—both terminating and
nonterminating. Here a terminating decimal is one of the form

0.43926

while a nonterminating decimal is one of the form

0.14159265 . . . .

In the case of the nonterminating decimal, no repetition is
implied; the decimal simply continues without cease.
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Now the set of all those decimals containing only the digits
0 and 1 can be identified in a natural way with the set of
sequences containing only 0 and 1 (just put commas between
the digits). And we just saw that the set of such sequences is
uncountable.

Since the set of all decimal numbers is an even bigger set, it
must be uncountable also. [Put a different way, if the set of all
decimal numbers were countable, then any of its infinite subsets
would be countable—that is one of our earlier results. Thus the
collection of decimal numbers containing only the digits 0 and 1
would be countable, and that is a contradiction.]
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As you may know, the set of all decimals identifies with the
set of all real numbers. [Many real numbers have two decimal
representations—one terminating and one not. Think for a
moment about which numbers these are, and why this
observation does not invalidate the present discussion.] We find
then that the set R of all real numbers is uncountable.
(Contrast this with the situation for the rationals.) In a later
lecture we will learn more about how the real number system is
constructed using just elementary set theory.
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Now we have the promised very dramatic result of Georg
Cantor about the transcendental numbers.

Proposition The set of all algebraic real numbers is countable.
The set of all transcendental numbers is uncountable.

Proof: Let P be the collection of all polynomials with integer
coefficients. We have already noted that P is a countable set. If
p ∈ P then let sp denote the set of real roots of p. Of course sp
is finite, and the number of elements in sp does not exceed the
degree of p. Then the set A of algebraic real numbers may be
written as

A = ∪p∈P sp .

This is the countable union of finite sets, so of course it is
countable.
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Now that we know that the set A of algebraic numbers is
countable, we can see that the set T of transcendental numbers
must be uncountable. For R = A∪T . If T were countable then,
since A is countable, it would follow that R is countable. But
that is not so.

Our last result in this section is a counterpoint to
Proposition 4.5.13 and the discussion leading up to it.

Proposition Let S be any infinite set. Then S has a subset T that
is countable.
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Proof: Let t1 ∈ S be any element. Now let t2 ∈ S be any
element that is distinct from t1. Continue this procedure. It
will not terminate, because that would imply that S is finite.
And it will produce a countable set T that is a subset of S .

To repeat the main point of this section, the natural
numbers have a cardinality that we call countable, and the real
numbers have a cardinality that we call uncountable. These
cardinalities are distinct. In fact the real numbers form a larger
set because there is an injective mapping of the natural
numbers into the reals but not the other way around. We refer
to the cardinality of the natural numbers as “countable” and to
that of the real numbers as “the cardinality of the continuum.”
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It is natural to ask whether there is a set with cardinality
strictly between countable and the continuum. Georg Cantor
posed this question one hundred years ago, and his failed
attempts to resolve the question tormented his final years. We
shall discuss the resolution of this “continuum hypothesis” in a
later lecture.

It is an important result of set theory (due to Cantor) that,
given any set S , the set of all subsets of S (called the power set
of S) has strictly greater cardinality than the set S itself. As a
simple example, let S = {a, b, c}. Then the set of all subsets of
S is {

∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}
}
.
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The set of all subsets has eight elements while the original
set has three.

We stress that this result is true not just for finite sets but
also for infinite sets: if S is an infinite set then the set of all its
subsets (the power set) has greater cardinality than S itself.
Thus there are infinite sets of arbitrarily large cardinality. In
other words, there is no “greatest” cardinal. This fact is so
important that we now formulate it as a theorem.
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Theorem [Cantor] Let S be any set. Then the power set P(S),
consisting of all subsets of S , has cardinality greater than the
cardinality of S . In other words,

card(S) < card(P(S)) .

Proof: First observe that the function

f : S −→ P(X )

s 7−→ {s}

is one-to-one. Thus we see that card(S) ≤ card(P(S)). We need
to show that there is no function from S onto P(S). Let
g : S → P(S). We will produce an element of P(S) that cannot
be in the image of this mapping.
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Define T = {s ∈ S : s 6∈ g(s)}. Assume, seeking a
contradiction, that T = g(z) for some z ∈ S . By definition of
T , the element z ∈ T if and only if z 6∈ g(z); thus z ∈ T if and
only if z 6∈ T . That is a contradiction. We see that g cannot
map S onto P(S), therefore card(S) < card(P(S)).
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In some of the examples in this section, we constructed a
bijection between a given set (such as Z) and a proper subset of
that set (such as E , the even integers). It follows from the
definitions that this is possible only when the sets involved are
infinite. In fact any infinite set can be placed in a set-theoretic
isomorphism with a proper subset of itself. We explore this
assertion in the exercises.

Put in other words, we have come upon an intrinsic
characterization of infinite sets. We state it (without proof) as
a proposition:
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Proposition Let S be a set. The set S is infinite if and only if it
can be put in one-to-one correspondence with a proper subset of
itself.

Exercise 4.41 outlines a proof of this proposition.
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