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The Integers

Now we will apply the notion of an equivalence class to
construct the integers (positive and negative and zero). There is
an important point of knowledge to be noted here. In view of
the last lecture, we may take the natural numbers as given. The
natural numbers are universally accepted, and we have
indicated how they may be constructed in a formal manner.
However, the number zero and the negative numbers are a
different matter. It was not until the fifteenth century that the
concepts of zero and negative numbers started to take hold—for
they do not correspond to explicit collections of objects (five
fingers or ten shoes) but rather to concepts (zero books is the
lack of books; minus 4 pens means that we owe someone four
pens). After some practice we get used to negative numbers,
but explaining in words what they mean is always a bit clumsy.
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In fact, it is sobering to realize that the Italian
mathematicians of the fifteenth and sixteenth centuries referred
to negative numbers—in their formal writings—as “fictitious” or
“absurd.” Mathematics is, in part, a subject that we must get
used to. It took several hundred years for mankind to get used
to negative numbers.
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It is much more satisfying, from the point of view of logic,
to construct the integers from what we already have, that is,
from the natural numbers. We proceed as follows. Let
A = N× N, the set of ordered pairs of natural numbers. We
define a relation R on A as follows:

(a, b) is related to (a∗, b∗) if a+ b∗ = a∗ + b
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Theorem The relation R is an equivalence relation.
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Proof: That (a, b) is related to (a, b) follows from the trivial
identity a+ b = a+ b. Hence R is reflexive. Second, if (a, b) is
related to (a∗, b∗), then a+ b∗ = a∗ + b hence a∗ + b = a+ b∗

(just reverse the equality) hence (a∗, b∗) is related to (a, b). So
R is symmetric.

Steven G. Krantz Math 310 November 13, 2020 Lecture



More on the Integers

Finally, if (a, b) is related to (a∗, b∗) and (a∗, b∗) is related
to (a∗∗, b∗∗), then we have

a+ b∗ = a∗ + b and a∗ + b∗∗ = a∗∗ + b∗.

Adding these equations gives

(a+ b∗) + (a∗ + b∗∗) = (a∗ + b) + (a∗∗ + b∗).

Cancelling a∗ and b∗ from each side finally yields

a+ b∗∗ = a∗∗ + b.

Thus (a, b) is related to (a∗∗, b∗∗). Therefore R is transitive.
We conclude that R is an equivalence relation.
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Remark We cheated a bit in the proof of the last theorem.
Since we do not yet have negative numbers, we therefore have
not justified the process of “cancelling” that we used. The most
rudimentary form of cancellation is Axiom P4 of the natural
numbers. Suggest a way to use mathematical induction,
together with Axiom P4, to prove that if a, b, c are natural
numbers and if a+ b = c + b, then a = c .
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Now our job is to understand the equivalence classes that
are induced by R. Let (a, b) ∈ A = N×N, and let [(a, b)] be the
corresponding equivalence class. If b > a, then we will denote
this equivalence class by the integer b − a. For instance, the
equivalence class [(2, 7)] will be denoted by 5. Notice that if
(a∗, b∗) ∈ [(a, b)], then a+ b∗ = a∗ + b hence b∗ − a∗ = b − a as
long as b > a. Therefore the numeral that we choose to
represent our equivalence class is independent of which element
of the equivalence class is used to compute it.
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If (a, b) ∈ A and b = a, then we let the symbol 0 denote the
equivalence class [(a, b)]. Notice that if (a∗, b∗) is any other
element of this particular [(a, b)], then it must be that
a+ b∗ = a∗ + b hence b∗ = a∗; therefore this definition is
unambiguous.

If (a, b) ∈ A and a > b, then we will denote the equivalence
class [(a, b)] by the symbol −(a− b). For instance, we will
denote the equivalence class [(7, 5)] by the symbol −2. Once
again, if (a∗, b∗) is related to (a, b), then the equation
a+ b∗ = a∗ + b guarantees that our choice of symbol to
represent [(a, b)] is unambiguous.
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Thus we have given our equivalence classes names, and
these names look just like the names that we give to integers:
there are positive integers, and negative ones, and zero. But we
want to see that these objects behave like integers. (As you read
on, use the informal mnemonic that the equivalence class [(a, b)]
stands for the integer b − a.)
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First, do these new objects that we have constructed add
correctly? Well, let A = [(a, b)] and C = [(c , d)] be two
equivalence classes. Define their sum to be
A+ C = [(a+ c , b + d)]. We must check that this is
unambiguous. If (ã, b̃) is related to (a, b) and (c̃ , d̃) is related to
(c , d), then of course we know that

a+ b̃ = ã+ b

and
c + d̃ = c̃ + d .
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Adding these two equations gives

(a+ c) + (b̃ + d̃) = (ã+ c̃) + (b + d)

hence (a+ c , b+ d) is related to (ã+ c̃ , b̃+ d̃). Thus adding two
of our equivalence classes gives another equivalence class, as it
should. We say that addition of integers is well defined.
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This point is so significant that it bears repeating. Each
integer is an equivalence class—that is, a set. If we are going to
add two integers m and n by choosing an element from the set
m and another element from the set n, then the operation that
we define had better be independent of the choice of elements.
This is another way of saying that we want the sum of two
equivalence classes to be another equivalence class. We call this
the concept of “well definedness.”
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Example To add 5 and 3, we first note that 5 is the equivalence
class [(2, 7)] and 3 is the equivalence class [(2, 5)]. We add them
componentwise and find that the sum is

[(2, 7)] + [2, 5)] = [(2 + 2, 7 + 5)] = [(4, 12)] .

Which equivalence class is this answer? Looking back at our
prescription for giving names to the equivalence classes, we see
that this is the equivalence class that we called 12− 4 or 8. So
we have rediscovered the fact that 5 + 3 = 8.
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Now let us add 4 and −9. The first of these is the
equivalence class [(3, 7)], and the second is the equivalence class
[(13, 4]). The sum is therefore [(16, 11)], and this is the
equivalence class that we call −(16− 11) or −5. That is the
answer that we would expect when we add 4 to −9.

Next, we add −12 and −5. Previous experience leads us to
expect the answer to be −17. Now −12 is the equivalence class
[(19, 7)], and −5 is the equivalence class [(7, 2)]. The sum is
[(26, 9)], which is the equivalence class that we call −17.
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Finally, we can see in practice that our method of addition
is unambiguous. Let us redo the second example using [(6, 10)]
as the equivalence class denoted by 4 and [(15, 6)] as the
equivalence class denoted by −9. Then the sum is [(21, 16)],
and this is still the equivalence class −5, as it should be.
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