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In this section we use the integers, together with a
construction using equivalence classes, to build the rational
numbers. Let A be the set Z× (Z \ {0}). In other words, A is
the set of ordered pairs (a, b) of integers subject to the
condition that b 6= 0. [Think of this ordered pair as ultimately
“representing” the fraction a/b.] We definitely want it to be the
case that certain ordered pairs represent the same number.
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For instance,

1
2 should be the same number as 3

6 .

This motivates our equivalence relation. Declare (a, b) to be
related to (a∗, b∗) if a · b∗ = a∗ · b. [Here we are thinking that the
fraction a/b should equal the fraction a∗/b∗ precisely when
a · b∗ = a∗ · b.]
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Is this an equivalence relation? Obviously the pair (a, b) is
related to itself, since a · b = a · b. Also the relation is
symmetric: if (a, b) and (a∗, b∗) are pairs and a · b∗ = a∗ · b,
then a∗ · b = a · b∗. Finally, if (a, b) is related to (a∗, b∗) and
(a∗, b∗) is related to (a∗∗, b∗∗), then we have both

a · b∗ = a∗ · b and a∗ · b∗∗ = a∗∗ · b∗. (?)

Multiplying the left sides of these two equations together and
the right sides together gives

(a · b∗) · (a∗ · b∗∗) = (a∗ · b) · (a∗∗ · b∗) . (??)
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If a∗ = 0, then it follows immediately from (?) that both a
and a∗∗ must be zero. So the three pairs (a, b), (a∗, b∗), and
(a∗∗, b∗∗) are equivalent, and there is nothing to prove. So we
may assume that a∗ 6= 0. We know a priori that b∗ 6= 0; therefore
we may cancel common terms in the equation (??) to obtain

a · b∗∗ = b · a∗∗.

Thus (a, b) is related to (a∗∗, b∗∗), and our relation is transitive.
[Exercise: explain why it is correct to “cancel common terms”
in the last step.]
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The resulting collection of equivalence classes will be called
the set of rational numbers, and we shall denote this set with the
symbol Q.

Example: The equivalence class [(4, 12)] contains all of the
pairs (4, 12), (1, 3), (−2,−6). (Of course it contains infinitely
many other pairs as well.) This equivalence class represents the
fraction 4/12 which we sometimes also write as 1/3 or
(−2)/(−6).
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If [(a, b)] and [(c , d)] are rational numbers then we define
their product to be the rational number

[(a · c , b · d)].

This is well defined (unambiguous), for the following reason.
Suppose that (a, b) is related to (ã, b̃) and (c , d) is related to
(c̃ , d̃). We would like to know that
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[(a, b)] · [(c , d)] = [(a · c , b · d)] is the same equivalence class as
[(ã, b̃)] · [(c̃ , d̃)] = [(ã · c̃ , b̃ · d̃)]. In other words, we need to know
that

(a · c) · (b̃ · d̃) = (ã · c̃) · (b · d). (∗)
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But our hypothesis is that

a · b̃ = ã · b and c · d̃ = c̃ · d .

Multiplying together the left sides and the right sides, we obtain

(a · b̃) · (c · d̃) = (ã · b) · (c̃ · d).

Rearranging, we have

(a · c) · (b̃ · d̃) = (ã · c̃) · (b · d).

But this is just (∗). So multiplication is well defined.
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Example: The product of the two rational numbers [(3, 8)]
and [(−2, 5)] is

[(3 · (−2), 8 · 5)] = [(−6, 40)] = [(−3, 20)].

This is what we expect: the product of 3/8 and −2/5 is −3/20.
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If q = [(a, b)] and r = [(c , d)] are rational numbers and if r
is not zero (that is, [(c, d)] is not the equivalence class zero—in
other words, c 6= 0), then we define the quotient q/r to be the
equivalence class

[(ad , bc)].

We leave it to you to check that this operation is well defined.
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Example: The quotient of the rational number [(4, 7)] by the
rational number [(3,−2)] is, by definition, the rational number

[(4 · (−2), 7 · 3)] = [(−8, 21)].

This is what we expect: the quotient of 4/7 by −3/2 is −8/21.
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How should we add two rational numbers? We could try
declaring [(a, b)] + [(c , d)] to be [(a+ c , b+ d)], but this will not
work (think about the way that we usually add fractions).
Instead we define

[(a, b)] + [(c , d)] = [(a · d + b · c , b · d)].

That this definition is well defined (unambiguous) is left for the
exercises. We turn instead to an example.
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Example: The sum of the rational numbers [(3,−14)] and
[(9, 4)] is given by

[(3 · 4+ (−14) · 9, (−14) · 4)] = [(−114,−56)] = [(57, 28)].

This coincides with the usual way that we add fractions :

− 3

14
+

9

4
=

57

28
.
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Notice that the equivalence class [(0, 1)] is the rational
number that we usually denote by 0. It is the additive identity,
for if [(a, b)] is another rational number, then

[(0, 1)] + [(a, b)] = [(0 · b + 1 · a, 1 · b)] = [(a, b)].

A similar argument shows that [(0, 1)] times any rational
number [(a, b)] gives [(0, b)] or 0. By the same token, the
rational number [(1, 1)] is the multiplicative identity. We leave
the details for you.
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Of course the concept of subtraction is really just a special
case of addition (that is α− β is the same thing as α+ (−β)).
So we shall say nothing further about subtraction.

In practice we will write rational numbers in the traditional
fashion:

2

5
,
−19
3

,
22

2
,
24

4
, . . . .

In mathematics it is generally not wise to write rational
numbers in mixed form, such as 23

5 , because the juxtaposition
of two numbers could easily be mistaken for multiplication.
Instead, we would write this quantity as the improper fraction
13/5.
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