Math 310
 November 18, 2020 Lecture

Steven G. Krantz

November 11, 2020

Figure: This is your instructor.

The Rational Numbers

In this section we use the integers, together with a construction using equivalence classes, to build the rational numbers. Let A be the set $\mathbb{Z} \times(\mathbb{Z} \backslash\{\mathbf{0}\})$. In other words, A is the set of ordered pairs (a, b) of integers subject to the condition that $b \neq \mathbf{0}$. [Think of this ordered pair as ultimately "representing" the fraction a / b.] We definitely want it to be the case that certain ordered pairs represent the same number.

For instance,

$$
\frac{1}{2} \text { should be the same number as } \frac{3}{6} \text {. }
$$

This motivates our equivalence relation. Declare (a, b) to be related to $\left(a^{*}, b^{*}\right)$ if $a \cdot b^{*}=a^{*} \cdot b$. [Here we are thinking that the fraction a / b should equal the fraction a^{*} / b^{*} precisely when $a \cdot b^{*}=a^{*} \cdot b$.]

Is this an equivalence relation? Obviously the pair (a, b) is related to itself, since $a \cdot b=a \cdot b$. Also the relation is symmetric: if (a, b) and $\left(a^{*}, b^{*}\right)$ are pairs and $a \cdot b^{*}=a^{*} \cdot b$, then $a^{*} \cdot b=a \cdot b^{*}$. Finally, if (a, b) is related to $\left(a^{*}, b^{*}\right)$ and $\left(a^{*}, b^{*}\right)$ is related to $\left(a^{* *}, b^{* *}\right)$, then we have both

$$
a \cdot b^{*}=a^{*} \cdot b \text { and } a^{*} \cdot b^{* *}=a^{* *} \cdot b^{*}
$$

Multiplying the left sides of these two equations together and the right sides together gives

$$
\left(a \cdot b^{*}\right) \cdot\left(a^{*} \cdot b^{* *}\right)=\left(a^{*} \cdot b\right) \cdot\left(a^{* *} \cdot b^{*}\right) .
$$

If $a^{*}=\mathbf{0}$, then it follows immediately from (\star) that both a and $a^{* *}$ must be zero. So the three pairs $(a, b),\left(a^{*}, b^{*}\right)$, and $\left(a^{* *}, b^{* *}\right)$ are equivalent, and there is nothing to prove. So we may assume that $a^{*} \neq \mathbf{0}$. We know a priori that $b^{*} \neq \mathbf{0}$; therefore we may cancel common terms in the equation ($* *$) to obtain

$$
a \cdot b^{* *}=b \cdot a^{* *}
$$

Thus (a, b) is related to $\left(a^{* *}, b^{* *}\right)$, and our relation is transitive. [Exercise: explain why it is correct to "cancel common terms" in the last step.]

The resulting collection of equivalence classes will be called the set of rational numbers, and we shall denote this set with the symbol \mathbb{Q}.
Example: The equivalence class $[(4,12)]$ contains all of the pairs $(\mathbf{4}, \mathbf{1 2}),(\mathbf{1}, \mathbf{3}),(-\mathbf{2},-\mathbf{6})$. (Of course it contains infinitely many other pairs as well.) This equivalence class represents the fraction $\mathbf{4} / \mathbf{1 2}$ which we sometimes also write as $\mathbf{1 / 3}$ or $(-2) /(-6)$.

If $[(a, b)]$ and $[(c, d)]$ are rational numbers then we define their product to be the rational number

$$
[(a \cdot c, b \cdot d)]
$$

This is well defined (unambiguous), for the following reason. Suppose that (a, b) is related to $(\widetilde{a}, \widetilde{b})$ and (c, d) is related to $(\widetilde{c}, \boldsymbol{d})$. We would like to know that
$[(a, b)] \cdot[(c, \underset{\sim}{d})]=[(a \cdot c, \underset{\sim}{b} \cdot \underset{\sim}{d})]$ is the same equivalence class as $[(\widetilde{a}, \widetilde{b})] \cdot[(\widetilde{c}, \widetilde{d})]=[(\widetilde{a} \cdot \widetilde{c}, \widetilde{b} \cdot \widetilde{d})]$. In other words, we need to know that

$$
\begin{equation*}
(a \cdot c) \cdot(\widetilde{b} \cdot \widetilde{d})=(\widetilde{a} \cdot \widetilde{c}) \cdot(b \cdot d) . \tag{*}
\end{equation*}
$$

But our hypothesis is that

$$
a \cdot \tilde{b}=\widetilde{a} \cdot b \quad \text { and } \quad c \cdot \tilde{d}=\widetilde{c} \cdot d
$$

Multiplying together the left sides and the right sides, we obtain

$$
(a \cdot \widetilde{b}) \cdot(c \cdot \widetilde{d})=(\widetilde{a} \cdot b) \cdot(\widetilde{c} \cdot d)
$$

Rearranging, we have

$$
(a \cdot c) \cdot(\widetilde{b} \cdot \widetilde{d})=(\widetilde{a} \cdot \widetilde{c}) \cdot(b \cdot d)
$$

But this is just $(*)$. So multiplication is well defined.

Example: The product of the two rational numbers [(3,8)] and $[(-2,5)]$ is

$$
[(3 \cdot(-2), 8 \cdot 5)]=[(-6,40)]=[(-3,20)] .
$$

This is what we expect: the product of $\mathbf{3 / 8}$ and $-2 / 5$ is $-\mathbf{3 / 2 0}$.

If $q=[(a, b)]$ and $r=[(c, d)]$ are rational numbers and if r is not zero (that is, $[(c, d)]$ is not the equivalence class zero - in other words, $c \neq \mathbf{0}$), then we define the quotient q / r to be the equivalence class

$$
[(a d, b c)] .
$$

We leave it to you to check that this operation is well defined.

Example: The quotient of the rational number [(4,7)] by the rational number $[(3,-2)]$ is, by definition, the rational number

$$
[(4 \cdot(-2), 7 \cdot 3)]=[(-8,21)]
$$

This is what we expect: the quotient of $\mathbf{4 / 7}$ by $-\mathbf{3} / \mathbf{2}$ is $-\mathbf{8} / \mathbf{2 1}$.

How should we add two rational numbers? We could try declaring $[(a, b)]+[(c, d)]$ to be $[(a+c, b+d)]$, but this will not work (think about the way that we usually add fractions). Instead we define

$$
[(a, b)]+[(c, d)]=[(a \cdot d+b \cdot c, b \cdot d)] .
$$

That this definition is well defined (unambiguous) is left for the exercises. We turn instead to an example.

Example: The sum of the rational numbers $[(\mathbf{3}, \mathbf{- 1 4})]$ and $[(9,4)]$ is given by

$$
[(3 \cdot 4+(-14) \cdot 9,(-14) \cdot 4)]=[(-114,-56)]=[(57,28)] .
$$

This coincides with the usual way that we add fractions :

$$
-\frac{3}{14}+\frac{9}{4}=\frac{57}{28}
$$

Notice that the equivalence class $[(\mathbf{0}, \mathbf{1})]$ is the rational number that we usually denote by $\mathbf{0}$. It is the additive identity, for if $[(a, b)]$ is another rational number, then

$$
[(\mathbf{0}, \mathbf{1})]+[(a, b)]=[(\mathbf{0} \cdot b+\mathbf{1} \cdot a, \mathbf{1} \cdot b)]=[(a, b)] .
$$

A similar argument shows that $[(\mathbf{0}, \mathbf{1})]$ times any rational number $[(a, b)]$ gives $[(\mathbf{0}, b)]$ or $\mathbf{0}$. By the same token, the rational number $[(\mathbf{1}, \mathbf{1})]$ is the multiplicative identity. We leave the details for you.

Of course the concept of subtraction is really just a special case of addition (that is $\alpha-\beta$ is the same thing as $\alpha+(-\beta)$). So we shall say nothing further about subtraction.

In practice we will write rational numbers in the traditional fashion:

$$
\frac{2}{5}, \frac{-19}{3}, \frac{22}{2}, \frac{24}{4}, \ldots
$$

In mathematics it is generally not wise to write rational numbers in mixed form, such as $2 \frac{3}{5}$, because the juxtaposition of two numbers could easily be mistaken for multiplication. Instead, we would write this quantity as the improper fraction 13/5.

