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Introduction

Now that we are accustomed to the notion of equivalence
classes, the construction of the integers and of the rational
numbers seems fairly natural. In fact, equivalence classes
provide a precise language for declaring certain objects to be
equal (or for identifying certain objects). We can now use the
integers and the rationals as we always have done, with the
added confidence that they are not simply a useful notation but
that they have been constructed.
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We turn next to the real numbers. We saw in Section 2.3 that the
rational number system is not closed under the operation of taking
square roots, for example. We know from calculus that for many
other purposes the rational numbers are inadequate. It is
important to work in a number system that is closed with respect
to all the operations we shall perform.
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While the rationals are closed under the usual arithmetic
operations, they are not closed under the operation of taking
limits. For instance, the sequence of rational numbers
3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . . consists of terms that seem
to be getting closer and closer together, seem to tend to some
limit, and yet there is no rational number which will serve as a limit
(of course it turns out that the limit is π—an “irrational” number).
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We will now deal with the real number system, a system that
contains all limits of sequences of rational numbers (as well as all
limits of sequences of real numbers). In fact, our plan will be as
follows. In this section we shall treat all the requisite properties of
the reals. And we shall prove some significant theorems about the
real number system. The actuall construction of the reals is a bit
tricky, and we shall discuss that matter in an Appendix at the end.
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Definition:
Let A be an ordered set and X a subsat of A. The set X called
bounded above if there is an element b ∈ A such that x ≤ b for
all x ∈ X . We call the element b an upper bound for the set X .

Steven G. Krantz Math 310 November 23, 2020 Lecture



The Real Numbers

Example:

Let A = Q with the usual ordering. The set
X = {x ∈ Q : 2 < x < 4} is bounded above. For example, the
number 15 is an upper bound for X . So are the numbers 12 and 4.
It is interesting to observe that no element of this particular X can
be an upper bound for X . The number 4 is a good candidate, but
4 is not an element of X . In fact if b ∈ X then (b + 4)/2 ∈ X and
b < (b + 4)/2, so b could not be an upper bound for X .
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It turns out that the most convenient way to formulate the notion
that the real numbers have “no gaps” (i.e., that all sequences that
seem to be converging actually have something to converge to) is
in terms of upper bounds.

Definition:

Let A be an ordered set and X a subset of A. An element b ∈ A is
called a least upper bound (or supremum) for X if b is an upper
bound for X and there is no upper bound b∗ for X with b∗ < b.
We denote the supremum/(least upper bound) of X by supX or
lubX .

By its very definition, if a least upper bound exists, then it is
unique.
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Example:

In the last example, we considered the set X of rational numbers
strictly between 2 and 4. We observed there that 4 is the least
upper bound for X . Note that this least upper bound is not an
element of the set X .

The set Y = {y ∈ Z : −9 ≤ y ≤ 7} has least upper bound 7.
In this case, the least upper bound is an element of the set Y .
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Notice that we may define a lower bound for a subset of an
ordered set in a fashion similar to that for an upper bound: ` ∈ A
is a lower bound for X ⊂ A if ` ≤ x for all x ∈ X . A greatest lower
bound (or infimum) for X is then defined to be a lower bound `
such that there is no lower bound `∗ with `∗ > `. We denote the
infimum/(greatest lower bound) of X by inf X or glbX .
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Example:

The set X in the above Examples has lower bounds −20, 0, 1, 2,
for instance. The greatest lower bound is 2, which is not an
element of the set.
The set Y in the last example has lower bounds
−53,−22,−10,−9, to name just a few. The number −9 is the
greatest lower bound. It is an element of Y .
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Example:

Let S = Z ⊂ R. Then S does not have either an upper bound or a
lower bound.

The purpose that the real numbers will serve for us is as follows:
they will contain the rationals, they will still be an ordered field,
and every nonempty subset which has an upper bound will have a
least upper bound. We formulate this property as a theorem.
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Theorem:

There exists an ordered field R that (i) contains Q and (ii) has the
property that any nonempty subset of R which has an upper
bound has a least upper bound.

We shall not prove this theorem right now. The proof is in an
Appendix which will come later.
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The last property described in this theorem is called the Least
Upper Bound Property of the real numbers. As mentioned
previously, this theorem will be proved in the optional next section.
Now we begin to realize why it is so important to construct the
number systems that we will use. We are endowing R with a great
many properties. Why do we have any right to suppose that there
exists a number system with all these properties? We must
produce one!

Steven G. Krantz Math 310 November 23, 2020 Lecture



The Real Numbers

Let us begin to explore the richness of the real numbers. The next
theorem states a property that is certainly not shared by the
rationals (see Section 2.3). It is fundamental in its importance.

Theorem:

Let x be a positive real number. Then there is a positive real
number y such that y2 = y · y = x .
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The proof of this theorem is serious business. It is a fairly tricky
calculation. You will want to get out your pencil and verify the
details yourself.
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Proof: We will use throughout this proof the fact (see Part 6 of
Theorem 6.3.9 in the text) that if 0 < a < b, then a2 < b2.
Let

S = {s ∈ R : s > 0 and s2 < x}.

Then S is not empty since x/2 ∈ S if x < 2 and 1 ∈ S otherwise.
Also S is bounded above since x + 1 is an upper bound for S . By
the theorem above, the set S has a least upper bound. Call it y .
Obviously 0 < min{x/2, 1} ≤ y hence y is positive. We claim that
y2 = x . To see this, we eliminate the other two possibilities.
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If y2 < x , then set ε = (x − y2)/[4(x + 1)]. Then ε > 0 and

(y + ε)2 = y2 + 2 · y · ε+ ε2

= y2 + 2 · y · x − y2

4(x + 1)
+

x − y2

4(x + 1)
· x − y2

4(x + 1)

< y2 + 2 · y

x + 1
· x − y2

4
+

x − y2

4
· x

4x

< y2 +
x − y2

2
+

x − y2

16
< y2 + (x − y2)

= x .

Thus y + ε ∈ S , and y cannot be an upper bound for S . This
contradiction tells us that y2 6< x .
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Similarly, if it were the case that y2 > x , then we set
ε = (y2 − x)/[4(x + 1)]. A calculatIon like the one we just did
then shows that (y − ε)2 > x . Hence y − ε is also an upper bound
for S , and y is therefore not the least upper bound. This
contradiction shows that y2 6> x .

The only remaining possibility is that y2 = x . That completes
the proof.
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A similar proof shows that, if n is a positive integer and x is a
positive real number, then there is a positive real number y such
that yn = x .

We next use the Least Upper Bound Property of the real
numbers to establish two important qualitative properties of the
real numbers:

Theorem:

The set R of real numbers satisfies the Archimedean Property:

Let a and b be positive real numbers. Then there is a
natural number n such that na > b.
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Proof: Suppose the Archimedean Property to be false. Then
S = {na : n ∈ N} has b as an upper bound. Therefore S has a
finite supremum β. Since a > 0, β − a < β. So β − a is not an
upper bound for S , and there must be a natural number n∗ such
that n∗ · a > β − a. But then (n∗ + 1)a > β, and β cannot be the
supremum for S . This contradiction proves the theorem.
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