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Key Properties of the Real Numbers

We resume our study of Dedekind cuts as a means to
construct the real number system. It will turn out, as we shall
see momentarily, that the collection of all Dedekind cuts is the
real number sysem R.

It is now routine to verify that the set of all cuts, with this
definition of multiplication, satisfies field axioms M1–M5. The
proofs follow those for A1–A5 rather closely.
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For the distributive property, one first checks the case when
all the cuts are positive, reducing it to the distributive property
for the rationals. Then one handles negative cuts on a
case-by-case basis.

The two properties of an ordered field are also easily
checked for the set of all cuts.
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We now know that the collection of all cuts forms an ordered
field. Denote this field by the symbol R and call it the real number
system. We next verify the crucial property of R that sets it apart
from Q:

Theorem:

The ordered field R satisfies the Least Upper Bound Property.

This result is obviously the whole point of our work up to this
point. Because we know, on account of this theorem, that the set
of Dedekind cuts is an ordered field containing the rationals (see
below) that satisfies the Least Upper Bound Property. Everything
that we proved about the reals in the previous two lectures relied
entirely on this fact.
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Proof: Let S be a subset of R which is bounded above. That is,
there is a cut α such that s < α for all s ∈ S . Define

S∗ =
⋃
C∈S
C.

Then S∗ is clearly nonempty, and it is therefore a cut since it is a
union of cuts. It is also clearly an upper bound for S since it
contains each element of S . It remains to check that S∗ is the
least upper bound for S .

In fact, if T < S∗, then T ⊂ S∗ and there is a rational number
q in S∗ \ T . But, by the definition of S∗, it must be that q ∈ C for
some C ∈ S . So C > T , and T cannot be an upper bound for S .
Therefore S∗ is the least upper bound for S , as desired.
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We have shown that R is an ordered field that satisfies the
least upper bound property. It remains to show that R contains (a
copy of) Q in a natural way. In fact, if q ∈ Q we associate to it
the element ϕ(q) = Cq ≡ {x ∈ Q : x < q}. Then Cq is obviously a
cut. It is also routine to check that

ϕ(q + q∗) = ϕ(q) + ϕ(q∗) and ϕ(q · q∗) = ϕ(q) · ϕ(q∗).

Therefore we see that ϕ is a ring homomorphism (see [LAN]) and
hence represents Q as a “subfield” of R.
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The Complex Number System

The way that we are taught about the complex numbers in high
school is completely misleading. We are led to believe that this
number system is some mysterious object containing “imaginary
numbers,” one of which plays the role of the square root of −1.

This is the wrong way to look at things. Just as with our other
number systems, we shall construct the complex numbers. It will
follow from this construction that there is an element i that
satisfies i · i = −1. This will just be true for reasons of algebra.

So what we will see is that the complex numbers are just
R2 = R×R equipped with two binary operations: addition and
multiplication. And here they are:

(x , y) + (x ′, y ′) = (x + x ′, y + y ′)

and
(x , y) · (x ′, y ′) = (xx ′ − yy ′, xy ′ + x ′y) .
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Although it is tempting to define multiplication by

(x , y) · (x ′, y ′) = (xx ′, yy ′) ,

this would be a mistake. For this defintion would allow the
product of two nonzero elements to be 0: (1, 0) · (0, 1) = (0, 0).
It would also fail to have a number of other desirable
properties. You will see that it is much more productive to use
the somewhat mysterious definition of multiplication given on
the previous screen.
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If you are puzzled by this definition of multiplication, then do
not worry. In a few moments you will see that it gives rise to the
notion of multiplication of complex numbers that you have seen
before. In any event, this notion of multiplication has the
properties we need, and gives the answers that we want.

It is interesting to note that, unlike the integers and the
rational numbers, the new number system C is not a collection of
equivalence classes. Instead, C is the Euclidean plane equipped
with some new algebraic operations.
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Example:

Let z = (3,−2) and w = (4, 7) be two complex numbers. Then

z + w = (3,−2) + (4, 7) = (3 + 4,−2 + 7) = (7, 5).

Also

z ·w = (3,−2) · (4, 7) = (3 ·4− (−2) ·7 , 3 ·7 + (−2) ·4) = (26, 13).
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As usual, we ought to check that addition and multiplication
are commutative, associative, that multiplication distributes over
addition, and so forth. We shall leave these tasks to the exercises.
Instead we develop some of the crucial properties of our new
number system.
Theorem:

The following properties hold for the number system C.

(1) The number 1 ≡ (1, 0) is the multiplicative identity: 1 · z = z
for any z ∈ C.

(2) The number 0 ≡ (0, 0) is the additive identity: 0 + z = z for
any z ∈ C.

(3) Each complex number z = (x , y) has an additive inverse
−z = (−x ,−y): it holds that z + (−z) = 0.

(4) The number i ≡ (0, 1) satisfies i · i = (−1, 0) ≡ −1; in other
words, i is a square root of −1.
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Proof: These are direct calculations, but it is important for us to
work out these facts.

First, let z = (x , y) be any complex number. Then

1 · z = (1, 0) · (x , y) = (1 · x − 0 · y , 1 · y + 0 · x) = (x , y) = z .

This proves the first assertion.
For the second assertion, we have

0 + z = (0, 0) + (x , y) = (0 + x , 0 + y) = (x , y) = z .

With z as above, set −z = (−x ,−y). Then

z + (−z) = (x , y) + (−x ,−y) = (x + (−x), y + (−y)) = (0, 0) = 0.

Finally, we calculate

i · i = (0, 1) · (0, 1) = (0 · 0− 1 · 1, 0 · 1 + 1 · 0) = (−1, 0) = −1.

Thus, as asserted, i is a square root of −1.
Steven G. Krantz Math 310 November 30, 2020 Lecture



The Real Numbers
The Complex Numbers

Proposition:

If z ∈ C, z 6= 0, then there is a complex number w such that
z · w = 1.

Proof: Write z = (x , y) and set

w =

(
x

x2 + y2
,
−y

x2 + y2

)
.

Since z 6= 0, this definition makes sense. Then it is straightforward
to verify that z · w = 1. Indeed,

z · w = (x , y) ·
(

x

x2 + y2
,
−y

x2 + y2

)
=

(
x · x

x2 + y2
− y · (−y)

x2 + y2
,
x · (−y)

x2 + y2
+

y · x
x2 + y2

)
= (1, 0) .
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Thus every nonzero complex number has a multiplicative
inverse. The other field axioms for C are easy to check. We
conclude that the number system C forms a field. You will prove in
the exercises that it is not possible to order this field. If α is a real
number, then we associate α with the complex number (α, 0). In
this way, we can think of the real numbers as a subset of the
complex numbers. In fact, the real field R is a subfield of the
complex field C. This means that if α, β ∈ R and (α, 0), (β, 0) are
the corresponding elements in C, then α + β corresponds to
(α + β, 0) and α · β corresponds to (α, 0) · (β, 0) = (αβ, 0).
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With the remarks in the preceding paragraphs, we can
sometimes ignore the distinction between the real numbers and the
complex numbers. For example, we can write

5 · i

and understand that it means (5, 0) · (0, 1) = (0, 5). Likewise, the
expression

5 · 1

can be interpreted as 5 · 1 = 5 or as (5, 0) · (1, 0) = (5, 0) without
any danger of ambiguity or misunderstanding.
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Theorem:

Every complex number can be written in the form a + b · i ,
where a and b are real numbers. In fact, if z = (a, b) ∈ C, then

z = a + b · i .

Proof: With the identification of real numbers as a subfield of the
complex numbers, we have that

a + b · i = (a, 0) + (b, 0) · (0, 1) = (a, 0) + (0, b) = (a, b) = z

as claimed.
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Now that we have constructed the complex number field, we
will adhere to the usual custom of writing complex numbers as
z = a + b · i or, more simply, a + bi . We call a the real part of z ,
denoted by Re z , and b the imaginary part of z , denoted Im z . In
this notation, our algebraic operations become

(a + bi) + (a∗ + b∗i) = (a + a∗) + (b + b∗)i

and

(a + bi) · (a∗ + b∗i) = (a · a∗ − b · b∗) + (a · b∗ + a∗ · b)i .
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If z = a + bi is a complex number, then we define its complex
conjugate to be the number z̄ = a− bi . We record some
elementary facts about the complex conjugate:
Proposition:

If z ,w are complex numbers, then

(1) z + w = z + w ;

(2) z · w = z · w ;

(3) z + z = 2 · Re z ;

(4) z − z = 2 · i · Im z ;

(5) z · z ≥ 0, with equality holding if and only if z = 0.
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Proof: Write z = a + bi ,w = c + di . Then

z + w = (a + c) + (b + d)i

= (a + c)− (b + d)i

= (a− bi) + (c − di)

= z + w .

This proves (1). Assertions (2), (3), and (4) are proved similarly.
For (5), notice that

z · z = (a + bi) · (a− bi) = a2 + b2 ≥ 0.

Clearly equality holds if and only if a = b = 0.
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The expression |z | is defined to be the nonnegative square
root of z · z . In other words

|z | =
√
z · z =

√
(x + iy) · (x − iy) =

√
x2 + y2.

It is called the modulus of z and plays the same role for the
complex field that absolute value plays for the real field: the
modulus of z measures the distance of z to the origin.
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The modulus has the following properties.
Proposition:

If z ,w ∈ C, then

(1) |z | = |z |;
(2) |z · w | = |z | · |w |;
(3) |Re z | ≤ |z | , |Im z | ≤ |z |;
(4) |z + w | ≤ |z |+ |w | .
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Proof: Write z = a + bi ,w = c + di . Then (1), (2), and (3) are
immediate. For (4) we calculate that

|z + w |2 = (z + w) · (z + w)

= z · z + z · w + w · z + w · w
= |z |2 + 2Re (z · w) + |w |2

≤ |z |2 + 2|z · w |+ |w |2

= |z |2 + 2|z | · |w |+ |w |2

= (|z |+ |w |)2.

Taking square roots proves (4).
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Observe that, if z is real, then z = a + 0i and the modulus of z
equals the absolute value of a. Likewise, if z = 0 + bi is pure
imaginary, then the modulus of z equals the absolute value of b. In
particular, the fourth part of the Proposition reduces, in the real
case, to the triangle inequality

|x + y | ≤ |x |+ |y |.

The most important property of the complex numbers C is
that C is algebraically complete. This means that any polynomial

p(z) = a0 + a1z + a2z
2 + · · ·+ akz

k

with complex coefficients has a complex root.
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This result was first proved by Carl Friedrich Gauss
(1777–1855) in his doctoral dissertation. He ultimately produced
five distinct proofs of the result. Gauss’s theorem was the capstone
of hundreds of years of the development of particular methods for
solving specific polynomial equations. Now we may be sure that
the polynomial

p(z) = 3− 5z + 9z2 + 4z3 − 12z4 + 23z5

has a root (indeed it has five roots!), even though we may have no
idea how to actually find them.
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Example:

Let us find all the roots of the polynomial

p(z) = z3 + (−3− i)z2 + (2 + 3i)z − 2i .

With some experimentation, we find that z = 1 is a root of p.
Dividing p by (z − 1), we find that

p(z) = (z − 1) · (z2 + (−2− i)z + 2i) .

Of course we can solve the quadratic polynomial using the
quadratic formula. We find the two additional roots 2 and i .
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Of course this result, the Fundamental Theorem of Algebra, is
a deep and difficult theorem.
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