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Figure: This is your instructor.
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The Polar Form of a Complex Number

Let θ be any real number. A famous formula of Euler
asserts that

e iθ = cos θ + i sin θ.

A rigorous verification of this formula requires a study of
complex power series. We now provide you with an intuitive
argument that should make you comfortable with Euler’s
formula.
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If z is any complex number, then define

ez =
∞∑
j=0

z j

j!
.

Notice that, when z happens to be a real number, then the
formula is one that you learned in calculus. The new formula is
a standard generalization of the calculus formula. Substitute in
iθ for z and (manipulating the series just as though it were a
polynomial) separate the right-hand side into its real and
imaginary parts.
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The result is

e iθ =

(
1− θ2

2!
+
θ4

4!
−+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
−+ · · ·

)
.

Finally, notice that the power series expansions in the parentheses
on the right are those associated with the functions cosine and
sine, respectively. Thus

e iθ = cos θ + i sin θ .

This is Euler’s formula.
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If ξ = s + it is any complex number such that s2 + t2 = 1,
then we may find an angle θ, 0 ≤ θ < 2π, such that cos θ = s and
sin θ = t. See the next figure. We conclude that

ξ = e iθ.

Explain this reasoning in detail.
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= s + it

Figure: The angle associated to a complex number of modulus 1.
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If z = x + iy ∈ C is any nonzero complex number, then let

r2 = |z |2 = x2 + y2.

The number r is the distance of z to the origin in the Argand
plane. It is also the modulus of z . Set ξ = z/r . Show that |ξ| = 1.
Now apply the result from the preceding frame to conclude that

z = r · ξ = r e iθ,

some 0 ≤ θ < 2π. This is called the polar form of the complex
number z .

If z = re iθ is a complex number in polar form, then re i(θ+2π) is
the same complex number. This statement follows from the
periodicity of sine and cosine.
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Let us use these ideas to find all cube roots of i . Using the polar
notation, we can write

i = 1 · e i(π/2) .

We need to solve the equation

(re iθ)3 = i = 1 · e i(π/2)

or
r3 · e3iθ = 1 · e i(π/2) .

We see that
r3 = 1 and 3iθ = iπ/2 .
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In conclusion
r = 1 and θ =

π

6
.

Thus we have found that one cube root of i is

z1 = 1 · e iπ/6 = cos(π/6) + i sin(π/6) =

√
3

2
+ i · 1

2
.

We are not finished because we expect a nonzero complex number
α to have three cube roots (after all, these are the roots of the
equation z3 − i = 0).
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So now we look at the equation

(re iθ)3 = 1 · e i(π/2+2π) .

Here of course we are using the periodicity of sine and cosine. Now
we have

r3 = 1 and 3θ =
5π

2
.

We find that

r = 1 and θ =
5π

6
.

In conclusion, we have a second cube root

z2 = 1 · e(5π/6)i = cos
5π

6
+ i sin

5pi

6
= −
√

3

2
+ i

1

2
.
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Repeating this process once more, we have

(re iθ)3 = 1 · e i(π/2+4π) .

Here of course we are using the periodicity of sine and cosine. Now
we have

r3 = 1 and 3θ =
9π

2
.

We find that

r = 1 and θ =
3π

2
.

In conclusion, we have a second cube root

z3 = 1 · e(3π/2)i = cos
3π

2
+ i sin

3pi

2
= 0− i = −i .

That is the complete solution to the problem of finding all cube
roots of i .
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Let us do one more example of this type. We will find all
fourth roots of −16. Now

−16 = 16 · e iπ .

So we must solve
(re iθ)4 = 16e iπ .

It follows that
r4 = 16 and 4θ = π .
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The result is that

r = 2 and θ =
π

4
.

So one fourth root of −16 is

z1 = 2e iπ/4 = 2
(

cos
π

4
+ i sin

π

4

)
= 2

(√
2

2
+ i

√
2

2

)
=
√

2+i
√

2 .
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Now let us pass to the next fourth root. We must solve

(re iθ)4 = 16e i(π+2π) .

It follows that

r4 = 16 and 4θ = 3π .

The result is that

r = 2 and θ =
3π

4
.

So the second fourth root of −16 is

z2 = 2e i3π/4 = 2

(
cos

3π

4
+ i sin

3π

4

)
= 2

(
−
√

2

2
+ i

√
2

2

)
= −
√

2+i
√

2 .
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Next let us pass to the third fourth root. We must solve

(re iθ)4 = 16e i(π+4π) .

It follows that

r4 = 16 and 4θ = 5π .

The result is that

r = 2 and θ =
5π

4
.

So the third fourth root of −16 is

z3 = 2e i5π/4 = 2

(
cos

5π

4
+ i sin

5π

4

)
= 2

(
−
√

2

2
− i

√
2

2

)
= −
√

2−i
√

2 .
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Finally let us pass to the last fourth root. We must solve

(re iθ)4 = 16e i(π+6π) .

It follows that

r4 = 16 and 4θ = 7π .

The result is that

r = 2 and θ =
7π

4
.

So the last fourth root of −16 is

z4 = 2e i7π/4 = 2

(
cos

7π

4
+ i sin

7π

4

)
= 2

(√
2

2
− i

√
2

2

)
=
√

2−i
√

2 .

Now we have found all fourth roots of −16.
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It is interesting to note that, if you plot the cube roots of i as
ordered pairs in the plane (this is called an Argand diagram), then
you will see that the three roots are equally spaced around a circle
of radius 1 centered at the origin.

If instead you plot the fourth roots of −16 as ordered pairs in
the plane, then you will see that the four roots are equally spaced
around a circle of radius 2 centered at the origin.
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As an exercise, you may wish to try your hand at calculating the
fourth roots of −2i . Plot your four roots in an Argand diagram,
and observe that they are equally spaced around a circle centered
at the origin.
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