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More on the Real Numbers

The real numbers are a profound and complex world. We
earlier had an introduction to the real numbers, but we did not
explore any of their truly deep properties.

In this current brief discussion we begin to explore the real
numbers and establish some of their more remarkable aspects.
This will be a real mathematical adventure, and you should
prepare to enjoy it.

Steven G. Krantz Math 310 December 7, 2020 Lecture



If x is a real number, then the absolute value of x, denoted
x|, is the distance of x to 0. In other words,

X if x>0

x|=¢ 0 if x=0
—x it x<0.
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Fundamental to our study of the deeper properties of the real
numbers is the triangle inequality: If x,y are real numbers, then

Ix +y| < |x| + |yl (*)

In fact the standard triangle inequality () entails other
inequalities that are also useful. Let x =a+ b and y = —b. Then
(*) implies

(a4 b) — b| < [a+b| + [b|

hence
la| —|b] < a+b]. ()
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A sequence in R is a function ¢ : N — R. We denote the
elements of the sequence by ¢(1), ¢(2),.... For example,

o) =47 +1

is a sequence. It is often useful to write out the elements of the
sequence in order: 2,5,10,17,.... We frequently denote the
elements of a sequence by the more convenient notation
@1, $2, @3, ... (rather than think of the sequence as a function).
The principal property of a sequence is whether or not it converges.
We say that a sequence {a;} = {a1, a2,...} converges to a
number « if, for every € > 0, there is a positive integer K such
that j > K implies that |a; — o] < e. What we have enunciated is
a quantitative, rigorous way of asserting that the numbers a;
become closer and closer, and stay close, to a (within any desired
distance ¢).
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Example:
Consider the sequence ¢(j) = (—1), or

—-1,1,-1,1,....
This sequence does not converge. Intuitively, the assertion is clear;
because the numbers in the sequence do not get close and stay
close to any fixed value a.. To verify this claim rigorously, we
suppose (seeking a contradiction) that in fact the sequence does
converge to some number «v. Let € = 1/2. Then, by the definition
of convergence, there is a positive integer K such that if j > K,
then |¢(j) — a| < e =1/2. Choose j > K so that ¢(j) = 1, that is
to say, choose j even and greater than K. Then ¢(j +1) = —1.
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As a result,

2 = [1-(-1)
= |o() —o(U +1)
= |(¢() —a) + (a—¢(+1))

6() — o] +]a = ¢( + 1)
L
5t =1

IN

We have derived the untenable assertion that 2 < 1. This
contradiction must mean that our assumption is false: the limit
number o cannot exist. So the sequence has no limit.
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Example:

Consider the sequence ¢(j) = (—1)//j. Intuitively, this
sequence converges. For the elements of the sequence seem to be
getting smaller and smaller in absolute value, and indeed seem to

tend to zero. Let us prove that this actually is the case.
Let € > 0. There is a natural number K so large that 1/K < e

(this is the Archimedian property of the natural numbers). If
Jj > K, then

. 1 1
W) =7 < g <e.

[6() — 0 =

as was to be proved. So the sequence ¢(j) converges to 0.
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Let {a;} be a sequence. A subsequence of {a;} is a sequence
{bx} whose elements come from the sequence {a;}, in order. We
usually denote the subsequence by {aj, }.

Example:
Let
al=1,a=4,a3=9,a,=16,a5=25,a5=236,...,a =2, ..
Then

aj1:4, aj2:9, 54)J'3:367 aj4:81,

is a subsequence. Of course a given sequence will have many
different subsequences.
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Basic Topological ldeas

Some of the most commonly used subsets of the real numbers are
intervals. The four types of intervals are these:

open (a,b) ={xeR:a<x<b}
closed [, ={xeR:a<x< b}
half-open [a,b) ={xeR:a<x< b}
half-open (a,b] ={xeR:a< x < b}
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A set O C R is said to be open if, for any x € O, there is an
€ > 0 such that (x —€,x +€) C O. A set £ C R is said to be
closed if <€ =R\ € is open.

A common mistake that students make is to supposed that if a
set is not open then it is closed. Or if a set is not closed then it is
open. This is incorrect. The set [0,1) ={x € R:0<x< 1} is
neither open nor closed.
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Example:

Let O = {x € R: x?> < 1}. Then O is an open set. To see this, let
x € O. Then certainly |x| < 1. Let e =1 — |x|. Then we claim
that (x —e,x+¢€) C O. Forif t € (x — ¢, x + €), then

It] <|x|+ |t —x| <|x|+e=|x|+(1—-|x])=1.

Therefore t> < 1 and t € O. Thus (x —e,x +€) C O. As a result,
O is open.
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Example:

Let E={xeR: x? < 1}. Then & is a closed set. To see this, we
consider
cf€={xeR:x<—-1lorx>1}.

Now let x € €. In case x > 1, then let e = x — 1. We claim that
(x —e,x+€) CE. Forift € (x—e x+e), then

t>2x—|x—t>x—e=x—(x—1)=1.
Thus t € €€ so (x —€,x +€) C €. A similar argument shows that

in case x < —1 and e = (—1) — x, then (x —¢,x +¢€) C €. As a
result, <€ is open; so & is closed.
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Proposition: Let £ C R be a closed set. Let {a;} be a sequence
of points in £. If the sequence {a;} converges to a point o € R,
then o € £. It is common to say that the set £ contains all its
limit points (or accumulation points).

Proof: Suppose that the assertion is false. Then there is a
sequence {aj} C & that converges to a point ¢, and o € €. But
£ is closed ,s0 € is open. Therefore there is a number € > 0 such
that (v — €, v+ €) C °€. But then aj & (o — €, o + €) for every j.
As a result, |aj — | > € for every j. Therefore it cannot be that
{aj} converges to o, and that is a contradiction. i
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