Math 310
 December 11, 2020 Lecture

Steven G. Krantz

December 2, 2020

Figure: This is your instructor.

More on the Real Numbers

Proposition: Suppose that $\mathcal{E} \subset \mathbb{R}$ contains all its limit points. Then \mathcal{E} is closed.
Proof: Suppose not. Then ${ }^{c} \mathcal{E}$ is not open. So there is a point $y \in{ }^{c} \mathcal{E}$ such that, for each integer $j>0$, the interval $(y-1 / j, y+1 / j) \not{ }^{c} \mathcal{E}$. That means that, for each j, there is a point $e_{j} \in \mathcal{E}$ that lies in $(y-1 / j, y+1 / j)$. But then $\left\{e_{j}\right\} \subset \mathcal{E}$ and this sequence converges to y. Since \mathcal{E} contains all its limit points, we conclude that $y \in \mathcal{E}$. That is a contradiction.

Compact Sets

A set $S \subset \mathbb{R}$ is said to be compact if, whenever $\left\{s_{j}\right\}_{j=1}^{\infty}$ is a sequence of points in S, then there is a subsequence $\left\{s_{j_{k}}\right\}$ that is convergent to a point of S.

Proposition:

A compact set is closed and bounded.

Proof: Let K be the compact set. If K is not bounded, then there is an element $x_{1} \in K$ such that $\left|x_{1}\right|>1$. Since K is unbounded, there then exists an element $x_{2} \in K$ such that $\left|x_{2}\right|>\left|x_{1}\right|+1$. Suppose, inductively, that $x_{1}, x_{2}, \ldots, x_{j}$ have been chosen. Then, since K is unbounded, there is an $x_{j+1} \in K$ such that $\left|x_{j+1}\right|>\left|x_{j}\right|+j$. It is then clear that the sequence $\left\{x_{j}\right\}$ contains no convergent subsequence. That contradicts the definition of compactness.

If K is not closed, then there is a sequence $\left\{x_{j}\right\} \subset K$ that converges to a point α that does not lie in K. But then every subsequence of $\left\{x_{j}\right\}$ also converges to $\alpha \notin K$. Thus K is not compact.

Proposition:

If a subset $E \subset \mathbb{R}$ is both closed and bounded, then it is compact.

Proof: Let $\left\{x_{j}\right\}$ be a sequence in E. Since E is bounded, it therefore lies in some interval $[-R, R]$. Let

$$
\begin{gathered}
S=\left\{x \in[-R, R]: \exists \text { infinitely many } x_{j}\right. \\
\text { such that } \left.x_{j} \geq x\right\} .
\end{gathered}
$$

Then S is a bounded set, for $|x| \leq R$ for every $x \in S$. Now let α be the least upper bound of S. Then α is finite, indeed $\alpha \leq R$.

We claim that there is a subsequence $\left\{x_{j_{k}}\right\}$ that converges to α. Let $\epsilon>0$. By the definition of "least upper bound," there must be infinitely many of the x_{j} between $\alpha-\epsilon$ and $\alpha+\epsilon$, otherwise we chose the least upper bound incorrectly. This assertion is true for every $\epsilon>0$. Thus

- We may choose $x_{j_{1}}$ in $(\alpha-1, \alpha+1)$;
- We may choose $x_{j_{2}}$ so that $j_{2}>j_{1}$ and $x_{j_{2}} \in(\alpha-1 / 2, \alpha+1 / 2)$;
- We may choose $x_{j_{3}}$ so that $j_{3}>j_{2}$ and $x_{j_{3}} \in(\alpha-1 / 3, \alpha+1 / 3) ;$
and so forth. By design, the subsequence $\left\{x_{j_{k}}\right\}$ converges to α. Since E is closed, we may conclude that $\alpha \in E$. Thus E is compact.

The last two propositions taken together are known as the Heine-Borel theorem: A subset of \mathbb{R} is compact if and only if it is closed and bounded.

We conclude with an important result about the intersection of a nested sequence of sets. We will make decisive use of it in the next lecture. First, we give an example.

Example:

For $j=1,2,3, \ldots$, let

$$
U_{j}=\left\{x \in \mathbb{R}: 0<x<\frac{1}{j}\right\} .
$$

Then $U_{1} \supseteq U_{2} \supseteq U_{3} \supseteq \cdots$. And each U_{j} is uncountable. One's intuition might suggest that $\mathcal{U} \equiv \cap_{j} U_{j}$ will certainly have points in it. But that is not the case. In fact, if $x>0$, then there is a positive integer j so large that $1 / j<x$. But then $x \notin U_{j}$, so certainly $x \notin \mathcal{U}$. If $x \leq 0$, then x does not lie in any U_{j} so $x \notin \mathcal{U}$. Thus \mathcal{U} is empty.

The situation is more favorable for nested sequences of compact sets:
Theorem
Let $E_{1} \supseteq E_{2} \supseteq E_{3} \supseteq \cdots$ be compact, nonempty sets. Then $\mathcal{E} \equiv \cap_{j} E_{j} \neq \emptyset$.
Proof: Let $e_{1} \in E_{1}, e_{2} \in E_{2}$, and so forth. The sequence $\left\{e_{j}\right\}$ lies in E_{1}, which is compact. So there is a subsequence $\left\{e_{j_{k}}\right\}$ that converges to a point $e \in E_{1}$. But all of the terms of this subsequence for $k \geq 2$ also lie in E_{2}. Since E_{2} is closed, we may conclude that the limit point e is also in E_{2}. Continuing, we find that $e \in E_{j}$ for every j. As a result, $e \in \cap_{j} E_{j} \equiv \mathcal{E}$. So $\mathcal{E} \neq \emptyset$.

The Cantor Set

We now use the ideas developed in the first three sections to demonstrate the existence of a remarkable set of real numbers that is known as the "Cantor ternary set." Note, as usual, that a careful and rigorous understanding of the real numbers is necessary in order to effect this construction.

Let $I=[0,1]$, the unit interval in the real line. Define a sequence of nested compact sets as follows:

- $I_{0}=[0,1]$;
- $I_{1}=[0,1 / 3] \cup[2 / 3,1] ;$
- $I_{2}=[0,1 / 9] \cup[2 / 9,1 / 3] \cup[2 / 3,7 / 9] \cup[8 / 9,1]$;
- ...

I_{0}

I_{1}


```
I
```

The construction continues. Each set l_{j+1} is constructed by removing the middle open third from each closed interval in the set l_{j}. Refer to the figures for the sets l_{j}.

Obviously $I_{0} \supseteq I_{1} \supseteq I_{2} \supseteq \cdots$ and every I_{j} is nonempty. Also each l_{j} is closed and bounded, hence compact. Therefore $C=\cap_{j} l_{j}$ is a nonempty compact set. We call it the Cantor ternary set.

Now we prove a sequence of propositions to establish some of the fundamental properties of the Cantor ternary set.

Proposition:

Let $S=[0,1] \backslash C$. Then S is a union of intervals with total length 1.

Of course the unit interval $[0,1]$ itself has length 1 . The proposition establishes that the complement of the Cantor set in the unit interval has length 1 . These assertions together suggest that the Cantor set has length 0 , so that it is "small" in some sense. In the subject of measure theory, one makes these assertions precise.

Proof of the Proposition: Of course

$$
\begin{aligned}
{[0,1] \backslash C } & =[0,1] \cap{ }^{c} C \\
& =[0,1] \cap{ }^{c}\left(\bigcap_{j} I_{j}\right) \\
& =[0,1] \bigcap\left(\bigcup_{j}^{c} I_{j}\right) \\
& =\bigcup_{j}\left([0,1] \cap{ }^{c} I_{j}\right)
\end{aligned}
$$

And each of the sets $[0,1] \cap{ }^{c} I_{j}$ is a union of intervals. Thus we see explicitly that the complement of the Cantor set is a union of intervals. More is true: these complements form an increasing union. So it is easy to keep track of all the intervals and to sum up their lengths:

- First, there is a single interval of length $1 / 3$.
- Second, there are two intervals of length $1 / 9$.
- Third, there are four intervals of length $1 / 27$.

Thus we may add up the lengths of all the intervals in the complement of C :

$$
\text { length }\left({ }^{c} C\right)=\sum_{j=1}^{\infty} \frac{2^{j-1}}{3^{j}}=\frac{1}{3} \cdot \sum_{j=0}^{\infty}\left(\frac{2}{3}\right)^{j}=\frac{1}{3} \cdot \frac{1}{1-2 / 3}=1
$$

So, in the sense of length, the Cantor set is small. In the next lecture we shall show that, in the sense of cardinality, the Cantor set is large.

