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More on the Real Numbers

Proposition: Suppose that E ⊂ R contains all its limit points.
Then E is closed.
Proof: Suppose not. Then cE is not open. So there is a point
y ∈ cE such that, for each integer j > 0, the interval
(y − 1/j , y + 1/j) 6⊂ cE . That means that, for each j , there is a
point ej ∈ E that lies in (y − 1/j , y + 1/j). But then {ej} ⊂ E
and this sequence converges to y . Since E contains all its limit
points, we conclude that y ∈ E . That is a contradiction.
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Compact Sets

A set S ⊂ R is said to be compact if, whenever {sj}∞j=1 is a
sequence of points in S , then there is a subsequence {sjk} that is
convergent to a point of S .

Proposition:

A compact set is closed and bounded.
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Proof: Let K be the compact set. If K is not bounded, then there
is an element x1 ∈ K such that |x1| > 1. Since K is unbounded,
there then exists an element x2 ∈ K such that |x2| > |x1|+ 1.
Suppose, inductively, that x1, x2, . . . , xj have been chosen. Then,
since K is unbounded, there is an xj+1 ∈ K such that
|xj+1| > |xj |+ j . It is then clear that the sequence {xj} contains no
convergent subsequence. That contradicts the definition of
compactness.

If K is not closed, then there is a sequence {xj} ⊂ K that
converges to a point α that does not lie in K . But then every
subsequence of {xj} also converges to α 6∈ K . Thus K is not
compact.
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Proposition:

If a subset E ⊂ R is both closed and bounded, then it is compact.
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Proof: Let {xj} be a sequence in E . Since E is bounded, it
therefore lies in some interval [−R,R]. Let

S = {x ∈ [−R,R] : ∃ infinitely many xj

such that xj ≥ x} .

Then S is a bounded set, for |x | ≤ R for every x ∈ S . Now let α
be the least upper bound of S . Then α is finite, indeed α ≤ R.

We claim that there is a subsequence {xjk} that converges to
α. Let ε > 0. By the definition of “least upper bound,” there must
be infinitely many of the xj between α− ε and α+ ε, otherwise we
chose the least upper bound incorrectly. This assertion is true for
every ε > 0. Thus
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I We may choose xj1 in (α− 1, α + 1);

I We may choose xj2 so that j2 > j1 and
xj2 ∈ (α− 1/2, α + 1/2);

I We may choose xj3 so that j3 > j2 and
xj3 ∈ (α− 1/3, α + 1/3);

and so forth. By design, the subsequence {xjk} converges to α.
Since E is closed, we may conclude that α ∈ E . Thus E is
compact.
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The last two propositions taken together are known as the
Heine–Borel theorem: A subset of R is compact if and only if it is
closed and bounded.

We conclude with an important result about the intersection of
a nested sequence of sets. We will make decisive use of it in the
next lecture. First, we give an example.
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Example:

For j = 1, 2, 3, . . . , let

Uj =

{
x ∈ R : 0 < x <

1

j

}
.

Then U1 ⊇ U2 ⊇ U3 ⊇ · · · . And each Uj is uncountable. One’s
intuition might suggest that U ≡ ∩jUj will certainly have points in
it. But that is not the case. In fact, if x > 0, then there is a
positive integer j so large that 1/j < x . But then x 6∈ Uj , so
certainly x 6∈ U . If x ≤ 0, then x does not lie in any Uj so x 6∈ U .
Thus U is empty.
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The situation is more favorable for nested sequences of
compact sets:

Theorem
Let E1 ⊇ E2 ⊇ E3 ⊇ · · · be compact, nonempty sets. Then
E ≡ ∩jEj 6= ∅.
Proof: Let e1 ∈ E1, e2 ∈ E2, and so forth. The sequence {ej} lies
in E1, which is compact. So there is a subsequence {ejk} that
converges to a point e ∈ E1. But all of the terms of this
subsequence for k ≥ 2 also lie in E2. Since E2 is closed, we may
conclude that the limit point e is also in E2. Continuing, we find
that e ∈ Ej for every j . As a result, e ∈ ∩jEj ≡ E . So E 6= ∅.
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The Cantor Set

We now use the ideas developed in the first three sections to
demonstrate the existence of a remarkable set of real numbers that
is known as the “Cantor ternary set.” Note, as usual, that a
careful and rigorous understanding of the real numbers is necessary
in order to effect this construction.

Let I = [0, 1], the unit interval in the real line. Define a
sequence of nested compact sets as follows:

I I0 = [0, 1];

I I1 = [0, 1/3] ∪ [2/3, 1];

I I2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1];

I . . .
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I0

Figure: First step in the construction of the Cantor set.
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I1

Figure: Second step in the construction of the Cantor set.
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I2

Figure: Third step in the construction of the Cantor set.
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The construction continues. Each set Ij+1 is constructed by
removing the middle open third from each closed interval in the set
Ij . Refer to the figures for the sets Ij .

Obviously I0 ⊇ I1 ⊇ I2 ⊇ · · · and every Ij is nonempty. Also
each Ij is closed and bounded, hence compact. Therefore C = ∩j Ij
is a nonempty compact set. We call it the Cantor ternary set.

Now we prove a sequence of propositions to establish some of
the fundamental properties of the Cantor ternary set.
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Proposition:

Let S = [0, 1] \ C . Then S is a union of intervals with total
length 1.

Of course the unit interval [0, 1] itself has length 1. The
proposition establishes that the complement of the Cantor set in
the unit interval has length 1. These assertions together suggest
that the Cantor set has length 0, so that it is “small” in some
sense. In the subject of measure theory, one makes these assertions
precise.
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Proof of the Proposition: Of course

[0, 1] \ C = [0, 1] ∩ cC

= [0, 1] ∩ c
(⋂

j

Ij
)

= [0, 1]
⋂(⋃

j

c Ij
)

=
⋃
j

(
[0, 1] ∩ c Ij

)
.

And each of the sets [0, 1]∩ c Ij is a union of intervals. Thus we see
explicitly that the complement of the Cantor set is a union of
intervals. More is true: these complements form an increasing
union. So it is easy to keep track of all the intervals and to sum up
their lengths:

I First, there is a single interval of length 1/3.
I Second, there are two intervals of length 1/9.
I Third, there are four intervals of length 1/27.
I . . .

Steven G. Krantz Math 310 December 11, 2020 Lecture



Thus we may add up the lengths of all the intervals in the
complement of C :

length(cC ) =
∞∑
j=1

2j−1

3j
=

1

3
·
∞∑
j=0

(
2

3

)j

=
1

3
· 1

1− 2/3
= 1 .

So, in the sense of length, the Cantor set is small. In the next
lecture we shall show that, in the sense of cardinality, the Cantor
set is large.
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