FINAL EXAM

General Instructions: Read the statement of each problem carefully. If you want full credit on a problem then you must show your work. If you only write the answer then you will not receive full credit.

You will submit your work on the CrowdMark system. Be sure to answer each question on a separate sheet of paper. You can answer questions 3 and 4 (each with three parts) on one page. Scan in each piece of paper separately.

This exam is worth 100 points. It is 25% of your grade.
Be sure to ask questions if anything is unclear.
(6 points) 1. Are the statements $(\sim \mathbf{A} \wedge \sim B) \Rightarrow(A \vee B)$ and $\sim(A \vee B) \Rightarrow$ $(\mathbf{A} \vee B)$ logically equivalent?
(6 points) 2. Draw a Venn diagram to illustrate the identity

$$
S \backslash(T \cup U)=(S \backslash T) \cap(S \backslash U)
$$

(9 points) 3. Which of these functions is one-to-one? Which is onto? Give a brief reason for each answer.
(a) $f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=x^{2}+x$
(b) $g: \mathbb{Z} \rightarrow \mathbb{Z} \quad g(n)=n(n-1)$
(c) $h: \mathbb{R} \rightarrow \mathbb{R} \quad h(x)=x \cos x$
(9 points) 4. Which of these sets is countable and which uncountable (give a brief reason for each answer)?
(a) $\mathbb{C} \backslash \mathbb{R}$
(b) $\mathbb{Z} \times \mathbb{R}$
(c) $\mathbb{Z} \times \mathbb{N}$
(6 points) 5. Prove that is impossible for two successive positive integers to both be perfect squares.
(6 points) 6. Use mathematical induction to prove that

$$
1^{2}+2^{2}+\cdots n^{2}=\frac{2 n^{3}+3 n^{2}+n}{6}
$$

(8 points) 7. Construct a Cantor-like set that has length $1 / 3$.
(6 points) 8. Prove that $\sqrt{6}$ is irrational.
(8 points) 9. Prove that multiplication of rational numbers is well defined.
(8 points) 10. What is the multiplicative inverse of the complex number i ?
(8 points) 11. Find all cube roots of the complex number $1-i$.
(7 points) 12. Let X be the integers \mathbb{Z}. Declare a set $U \subset X$ to be open if the complement of U is finite or empty or if U itself is empty. Show that this defines a topology on X.
(7 points) 13. Let $E \subset \mathbb{R}$ be a closed set and $K \subset \mathbb{R}$ a compact set. Assume that $E \cap K=\emptyset$. Prove that there is an $\epsilon>0$ so that if $e \in E$ and $k \in K$ then $|e-k|>\epsilon$.
(6 points) $\mathbf{1 4}$. What is the multiplicative inverse of the quaternion $\mathbf{i}+\mathbf{j}$?

