Krantz

PRACTICE EXAM FOR FINAL EXAM

(6 points) 1. Are the statements $(\sim A \vee \sim B) \vee(B \wedge C)$ and $(A \wedge B) \Rightarrow(B \wedge C)$ logically equivalent?
(6 points) 2. Draw a Venn diagram to illustrate the identity

$$
S \backslash(T \cap U)=(S \backslash T) \cup(S \backslash U)
$$

(9 points) 3. Which of these functions is one-to-one? Which is onto? Give a brief reason for each answer.
(a) $f: \mathbb{R} \rightarrow \mathbb{R} \quad f(x)=x^{2}-2 x$
(b) $g: \mathbb{Z} \rightarrow \mathbb{Z} \quad g(n)=n(n+2)$
(c) $h: \mathbb{R} \rightarrow \mathbb{R} \quad h(x)=x^{2} \sin x$
(9 points) 4. Which of these sets is countable and which uncountable (give a brief reason for each answer)?
(a) $\mathbb{C} \backslash \mathbb{Z}$
(b) $\mathbb{Z} \times \mathbb{C}$
(c) $\mathbb{Q} \times \mathbb{N}$
(6 points) 5. Prove that is impossible for two perfect cubes to differ by 3 .
(6 points) 6. Use mathematical induction to prove that

$$
1+2+\cdots n=\frac{n(n+1)}{2}
$$

(8 points) 7. Construct a Cantor-like set that has length $1 / 2$.
(6 points) 8. Prove that $\sqrt{8}$ is irrational.
(8 points) 9. Use the least upper bound property of the reals to prove that 2 has a square root.
(8 points) 10. What is the multiplicative inverse of the complex number $-i$?
(8 points) 11. Find all cube roots of the complex number i.
(7 points) 12. Let X be the integers \mathbb{Z}. Declare a set $U \subset X$ to be open if its complement is infinite. Does this define a topology?
(7 points) 13. Construct a C^{2} function from \mathbb{R} to \mathbb{R} which is positive for $x>1$, positive for $x<-1$, and equal to 0 for $-1 \leq x \leq 1$.
(6 points) $\mathbf{1 4}$. What is the multiplicative inverse of the quaternion $\mathbf{j}-\mathbf{k}$?

