PRACTICE EXAM FOR SECOND MIDTERM

- **1.** Let $S = \{3, 4, 6\}$ and $T = \{3, 5\}$. What is $S \cup T$? What is $S \cap T$? What is $S \setminus T$?
- **2.** Let $S = \{2, 4\}$ and $T = \{a, b, d\}$. What is $S \times T$? What is $T \times S$?
- 3. Draw two Venn diagrams to illustrate the identity

$$(T \cup U) \setminus S = (T \setminus S) \cup (U \setminus S).$$

- **4.** What is the power set of $\{\lambda, A, 2\}$?
- 5. Which of these functions is one-to-one? Which is onto (give a brief reason for each answer)?

(a) f:	$\mathbb{R} \to \mathbb{R}$	$f(x) = x^2 + x$
(b) g:	$\mathbb{N} \to \mathbb{N}$	g(n) = n(n+3)
(c) h:	$\mathbb{R} \to \mathbb{R}$	$h(x) = x \cos x$

- 6. Which of these sets is countable and which uncountable (give a brief reason for each answer)?
 - (a) $\mathbb{C} \times \mathbb{C}$
 - (b) $\mathbb{Z} \times \mathbb{Q}$
 - (c) $\mathbb{N} \times \mathbb{R}$
- 7. Calculate the inverse of the function $f : \mathbb{R} \to \mathbb{R}$ given by

$$f(x) = \begin{cases} x^3 & \text{if } x \le 0\\ x & \text{if } x > 0. \end{cases}$$

- 8. Prove that the collection of S of rational numbers with denominator 7 is countable.
- **9.** Explain why the product of an uncountable set and a countable set is uncountable.
- 10. Explain why the union of a uncountable set and a countable set is uncountable.
- 11. Prove that subtraction in the integers is well defined. You should use the actual, *rigorous* definition of the integers in terms of ordered pairs of natural numbers to do this problem. Also use the rigorous definition of subtraction provided in the book and the lectures.
- 12. What is the multiplicative inverse of the complex number -i?
- 13. Find a square root in the quaternions of the quaterion $2 \cdot \mathbf{1} + 2 \cdot \mathbf{j}$.
- 14. Find all square roots of the complex number 1 i.