# Review of Part II 

Math 2200

## Correlation

- Sign of $r$ gives the direction of the association
- $-1 \leq r \leq 1$
- $X$ and $Y$ are uncorrelated $\Leftrightarrow r=0$
- Correlation treats $x$ and $y$ symmetrically

That is, $r(x, y)=r(y, x)$

- The correlation coefficient $r$ has no units
- It does not change w.r.t. shifting or rescaling
- Uncorrelated does NOT imply no association
- Sensitive to outliers


## TI-83

- When you set DiagnosticsON, then you can get the correlation coefficient in linear regression analysis
- Alternatively, convert x and y to z-scores first, then use 2-VAR STAT to find $\Sigma x y$, and then divided by $n-1$.


## Linear regression

- How to calculate the slope?

The slope is $r \frac{s_{x}}{s_{y}}$

- Given the slope, and standard deviations, how to calculate the correlation?
- The line always goes through $(\bar{x}, \bar{y})$.


## Linear regression (continued)

- Residual: $e=y-\hat{y}$
- Overestimation
- Underestimation
- Residual plot
- Linear association does not imply causaility
- How to interpret $R^{2}$ ?
$0 \leq R^{2} \leq 1$
The bigger $R^{2}$ is, the stronger the linear association.

