ERRATA

Adapted Wavelet Analysis from Theory to Software
Mladen Victor Wickerhauser
AK Peters, Ltd. 1994 — ISBN 1-56881-041-5

August 2, 2001

The following errors were found in the 9 May 1994 version:
e Chapter 1, page 10, line 31: replace
The Schwartz class S
with
The Schwartz class S
e Chapter 1, page 11, line 6: replace

For calculations, it is often useful to first define formulas on test functions or Schwartz
functions,

with

For calculations, it is often useful to define formulas first on test functions or Schwartz
functions,

e Chapter 1, page 21, line 7: replace

1 1
a(0) =¢(0); a(k) = 7 [c(—k) +c(k)]; b(k) = 7 [c(—k) — c(k)]. (1.49)
with
1 1
a(0) = c(0); a(k) = 7 [e(=k) + c(k)]; b(k) = Py [e(—k) — c(k)] . (1.49)

e Chapter 2, page 53, lines 23-31: replace
btnt2btn(ROOT, LEVEL, BLOCK):
If LEVEL==0 || ROOT==NULL then
Let NODE = ROOT

Else

If BLOCK is even then
Let NODE = btnt2btn(ROOT.LEFT, LEVEL-1, BLOCK/2)

Else
Let NODE = btnt2btn(ROOT.RIGHT, LEVEL-1,

Return NODE

(BLOCK-1)/2)

with
btnt2btn(ROOT, LEVEL, BLOCK)
If LEVEL==0 || ROOT==NULL then
Let NODE = ROOT

Else
If the LEVEL bit of BLOCK is O then

Let NODE = btnt2btn(ROOT.LEFT, LEVEL-1, BLOCK)

Else
Let NODE = btnt2btn(ROOT.RIGHT, LEVEL-1, BLOCK)

Return NODE

e Chapter 2, page 54, lines 17-27: replace

btn2branch(SELF, LEVEL, BLOCK):
If LEVEL>0 then
If BLOCK is even then

If SELF.LEFT==NULL then
Let SELF.LEFT = makebtn(NULL, NULL, NULL, NULL)

Let SELF = btn2branch(SELF.LEFT, LEVEL-1, BLOCK/2)
Else

If SELF.RIGHT==NULL then
Let SELF.RIGHT = makebtn(NULL, NULL, NULL, NULL)

Let SELF = btn2branch(SELF.RIGHT, LEVEL-1, (BLOCK-1)/2)
Return SELF

with
btn2branch(ROOT, LEVEL, BLOCK)

If ROOT==NULL then
Let ROOT = makebtn(NULL, NULL, NULL, NULL)

If the LEVEL bit of BLOCK is O then
Let ROOT.LEFT = btn2branch(ROOT.LEFT, LEVEL-1, BLOCK)

Else
Let ROOT.RIGHT = btn2branch(ROOT.RIGHT, LEVEL-1, BLOCK)

Return ROOT

e Chapter 2, page 54, line 28 to page 55, line 3: replace

with

This function expects as input a preallocated BTN data structure, regarded as the root of the
binary tree, and valid level and block indices. It returns a pointer to the node corresponding
to that level and block in the binary tree. It allocates any intermediate nodes along the
branch, including the target node itself if that is necessary, and leaves null pointers to any
unused children in the allocated nodes.

This function expects as input either a preallocated BTN data structure, regarded as the
root of the binary tree, or a NULL pointer, plus valid level and block indices. It returns a
pointer to the root of a BTN tree, either the same one as the input or a newly allocated one
if ROOT was NULL, containing the complete branch to the node at the specified level and
block. It allocates any intermediate nodes along the branch, including the target BTN itself
if that is necessary, and leaves null pointers to any unused children in the allocated nodes.

e Chapter 2, page 59, line 32: replace

with

FRACTION += 1<<LEVEL

FRACTION += 1<<(MAXLEVEL-LEVEL)

e Chapter 2, page 60, lines 15-29: replace

hedge2btnt (ROOT, GRAPH):
Let MAXLEVEL 0
Let FRACTION = 0O
For I = 0 to GRAPH.BLOCKS-1
Let LEVEL = GRAPH.LEVELS[I]
If LEVEL>MAXLEVEL then
FRACTION <<= LEVEL-MAXLEVEL
Let MAXLEVEL = LEVEL
Let BLOCK = FRACTION
Else
Let BLOCK = FRACTION>>(MAXLEVEL-LEVEL)
Let NODE = btn2branch(ROOT, LEVEL, BLOCK)
Let NODE.CONTENT = GRAPH.CONTENTS[I]
FRACTION += 1<<LEVEL
Return MAXLEVEL

with

hedge2btnt (GRAPH):
Let ROOT = 0
Let MAXLEVEL 0
Let FRACTION 0
For I = 0 to GRAPH.BLOCKS-1
Let LEVEL = GRAPH.LEVELS[I]
If LEVEL>MAXLEVEL then
FRACTION <<= LEVEL-MAXLEVEL
Let MAXLEVEL = LEVEL
Let BLOCK = FRACTION
Else
Let BLOCK = FRACTION>>(MAXLEVEL-LEVEL)
Let ROOT = btn2branch(ROOT, LEVEL, BLOCK)
Let NODE = btn2btn(ROOT, LEVEL, BLOCK)
Let NODE.CONTENT = GRAPH.CONTENTS[I]
FRACTION += 1<<(MAXLEVEL-LEVEL)
Return ROOT

e Chapter 2, page 60, lines 32-33: delete

Notice that both hedge2btnt () and btnt2hedge () return the maximum depth of any node
in their tree. In fact, the two functions differ in just two lines.

e Chapter 2, page 62, lines 13-18: replace

tfal2btnt (ROOT, ATOM):
Let NODE = btn2branch(ROOT, ATOM.LEVEL, ATOM.BLOCK)
Let LEAST min(NODE.CONTENT.LEAST, ATOM.OFFSET)
Let FINAL max(NODE.CONTENT.FINAL, ATOM.OFFSET)
enlargeinterval (NODE.CONTENT, LEAST, FINAL)
NODE.CONTENT.ORIGIN[ATOM.OFFSET] += ATOM.AMPLITUDE

with

tfal2btnt(ROOT, ATOM):
Let ROOT = btn2branch(ROOT, ATOM.LEVEL, ATOM.BLOCK)
Let NODE = btnt2btn(ROOT, ATOM.LEVEL, ATOM.BLOCK)
If NODE.CONTENT is NULL then
Let NODE.CONTENT = makeinterval (NULL, ATOM.OFFSET, ATOM.OFFSET)
Else
Let LEAST = min(NODE.CONTENT.LEAST, ATOM.OFFSET)
Let FINAL max(NODE.CONTENT.FINAL, ATOM.OFFSET)
enlargeinterval (NODE.CONTENT, LEAST, FINAL)
NODE.CONTENT.ORIGIN[ATOM.OFFSET] += ATOM.AMPLITUDE
Return ROOT

e Chapter 2, page 62, lines 22-24: replace

tfals2btnt(ROOT, ATOMS, NUM):
For K = 0 to NUM-1
tfal2btnt (ROOT, ATOMS[K])

with

tfals2btnt(ROOT, ATOMS, NUM):
For K = 0 to NUM-1
Let ROOT = tfal2btnt(ROOT, ATOMS[K])
Return ROOT

e Chapter 2, page 64, lines 11-12: replace

Let NUM = abtblength(LENGTH, LEVEL)
array2tfals(ATOMS, NUM, GRAPH.CONTENTS+J, BLOCK, LEVEL)

with

Let NUM = abtblength(LENGTH, LEVEL)
START += NUM
array2tfals(ATOMS, NUM, GRAPH.CONTENTS+J, BLOCK, LEVEL)

e Chapter 2, page 64, line 31: replace
FRACTION += 1<<LEVEL
with

FRACTION += 1<<(MAXLEVEL-LEVEL)

e Chapter 2, page 65, line 31: replace

with

FRACTION += 1<<LEVEL

FRACTION += 1<<(MAXLEVEL-LEVEL)

e Chapter 3, page 75, lines 26 and 27: replace

with

Let W[N].RE =
Let W[N].IM =

Let W[K].RE =
Let W[K].IM =

cos (K+*FACTOR)
sin(K*FACTOR)

cos (K*FACTOR)
sin (K*FACTOR)

e Chapter 4, page 119, line 11: replace

with

Lemma 4.7 Suppose that B, (ag) and Be, (o) are

Lemma 4.7 Suppose that B.(ag) and Be(ay) are

e Chapter 4, page 119, lines 13-14: replace

with

with

with

W*(r,I,e)11f

Let R.ORIGIN[O]

Let R.ORIGIN[O]

W(Tala 6) 1If
W*(T,I, 6) 11f

Chapter 4, page 139, line 29: replace

Wir Ie)lrf = @rU(r,a0,€)U(r,a1,€)11f);; (4.43)
= (1, U"(r,0,€)U"(r,c1,€) 11 f); - (4.44)
= 1 U(T‘, @, G)U(Ta alae) (1If)[; (443)
= 1;U(r,a0,€)U"(r,a1,€) (11f); . (4.44)
sqrt(2.0)
sqrt(0.5)

Chapter 5, page 169, lines 4 and 5: replace

C |6 | H | 3.6160691415 | 0.4990076823
G | 1.3839308584 | 0.4990076823
C | 6| H | 20346814255 | 0.0135212898
G | 2.9653185745 | 0.0135212898

e Chapter 5, page 175, lines 7 and &: replace

with

C |6 | H| .247013 | .102745
G | .268885 | .069768
C |6 | H| .219458 | .038215
G | 199186 | .038215

e Chapter 5, page 178, lines —7 to —5: replace

with

Thus

Thus

—

+ Z f(2k—|—l)e*2’”7Cg Z u(2n—|—1)e*2“"5.
k

n

Fu(é-) = fe(g)ae(g) + fo(f)'&o(g)v (5'58)

k

+ Z J“(Qk—i—l)efgm-k5 Z u(2n—1)672m‘"5.

Fu(€) = fe(€)e(€) + e 2™ fo(€)10(€), (5.58)

e Chapter 5, page 179, line 6: replace

with

Fru(€) =

Fru(¢) =

ZF*u(n)ef%rin{ —

Z F*u(n)e—27rin§ —

e Chapter 5, page 180, line 6: replace

with

matrix equation M*M’ = 21

matrix equation M*M’ = M'M* = 2]

e Chapter 5, page 180, line 17: replace

with

MM, = 21

M; M), = MM, = 21

e Chapter 5, page 186, line 3: replace
support diameter less than d/10
with
support diameter less than 10d
e Chapter 5, page 196, lines 13-14: replace

If we wish to assign output values rather than to superpose them, we need only replace the
increment operator in the OUT[] statement by an assignment operator.

with

If we wish to assign output values rather than to superpose them, we need to assign 0 to
each successive element of OUT[] before superposing the result onto it.

e Chapter 5, page 198, lines 13-14: replace

If we wish to assign output values rather than to superpose them, we need only replace the
increment operator in the OUT[] statement by an assignment operator.

with

If we wish to assign output values rather than to superpose them, we need to assign 0 to
each successive element of OUT[] before superposing the result onto it.

e Chapter 5, page 206, line 9: replace
OUT[I*STEP] += FILTER[J]*IN[Q+2*I-J]
with
OUT[I*STEP] += FILTER/[J]*IN[2*I-J-Q)]
e Chapter 5, page 206, line 16: replace
OUT[I*STEP] += FILTER[J]*IN[2*I-J-Q)]
with
OUT[I*STEP] += FILTER[J]*IN[Q+2*I-J]
e Chapter 5, page 206, line 34: replace

but we replace the increment operator with an assignment operator in all statements with
OUT[] in the left-hand side.

with

but we assign 0 to each successive element of OUT[] before accumulating the result into it.

e Chapter 5, page 207, lines 21 through 26: replace

For I = 0 to J02-Q2

OUT[I*STEP] += FILTER[Q+2*I-J]*IN[I]
For I = max(0,JA2) to min(Q2-1,J02)

OUT [I*STEP] += FILTER[2*I-J]*IN[I]
For I = JA2+Q2 to Q2-1

OUT[I*STEP] += FILTER[2*I-J-Q]*IN[I]

with

For I = 0 to J02-Q2

OUT[J*STEP] += FILTER[Q+2*I-J]*IN[I]
For I = max(0,JA2) to min(Q2-1,J02)

OUT [J*STEP] += FILTER[2%I-J]*IN[I]
For I = JA2+Q2 to Q2-1

OUT [J*STEP] += FILTER[2*I-J-Q]*IN[I]

e Chapter 5, page 208, line 2: replace

but with assignments rather than increments in all statements with OUT[] in their left-hand
sides.

with
but we assign 0 to each successive element of OUT[] before accumulating the result into it.
e Chapter 7, page 264, lines 15-25: replace

hedge2dwpspr(GRAPH, J, N, S, HQF, GQF, WORK):

If S < GRAPH.LEVELS[J] then
Let J = hedge2dwpspr(GRAPH, J, N/2, S+1, HQF, GQF, WORK)
Let LEFT = GRAPH.CONTENTS [J]
Let J = hedge2dwpspr(GRAPH, J+1, N/2, S+1, HQF, GQF, WORK)
Let RIGHT = GRAPH.CONTENTS[J]
acdpe(WORK, 1, LEFT, N/2, HQF)
acdpo(WORK, 1, RIGHT, N/2, GQF)
For I = 0 to N-1

Let LEFT[I] = WORK[I]
Return J

with

hedge2dwpspr(GRAPH, J, N, S, HQF, GQF, WORK):

If S < GRAPH.LEVELS[J] then
Let LEFT = GRAPH.CONTENTS[J]
Let J = hedge2dwpspr(GRAPH, J, N/2, S+1, HQF, GQF, WORK)
Let RIGHT = GRAPH.CONTENTS[J]
Let J = hedge2dwpspr(GRAPH, J, N/2, S+1, HQF, GQF, WORK)
acdpe(WORK, 1, LEFT, N/2, HQF)
acdpo(WORK, 1, RIGHT, N/2, GQF)
For T = 0 to N-1

Let LEFT[I] = WORK[I]

Else
J+=1

Return J

e Chapter 7, page 269, lines 8-18: replace

with

acdaparent (PARENT, CHILD, F):
If CHILD != NULL then
If CHILD.ORIGIN != NULL then

Let LEAST acdaleast(CHILD, F)

Let LEAST min(PARENT.LEAST, LEAST)

Let FINAL = acdafinal(CHILD, F)

Let FINAL max(PARENT.FINAL, FINAL)

Let PARENT = enlargeinterval(PARENT, LEAST, FINAL)

acdai(PARENT.ORIGIN, 1, CHILD.ORIGIN,
CHILD.LEAST, CHILD.FINAL, F)

Return PARENT

acdaparent (PARENT, CHILD, F):
If CHILD != NULL then
If CHILD.ORIGIN != NULL then
Let LEAST = acdaleast(CHILD, F)
Let FINAL = acdafinal(CHILD, F)
If PARENT != NULL then
Let LEAST = min(PARENT.LEAST, LEAST)
Let FINAL = max(PARENT.FINAL, FINAL)
Let PARENT = enlargeinterval(PARENT, LEAST, FINAL)
acdai(PARENT.ORIGIN, 1, CHILD.ORIGIN,
CHILD.LEAST, CHILD.FINAL, F)

Return PARENT

e Chapter 7, page 269, lines 23-27: replace

with

Next we link together whole branches from the root leading to nonempty nodes, using the
utility function btn2branch (). This function returns a pointer to a target node and allocates
any intermediate nodes along the branch, including the target node itself if that is necessary.
It assigns null pointers to any unused children in the allocated nodes.

Next we link together a partial BTN tree containing branches to all the nonempty nodes,
using the utility functions btn2branch() and btnt2btn(). The first function allocates any
intermediate nodes along the branch, including the root and the target node itself if necessary.
It assigns NULL pointers to any unused children along the way. The latter function returns
a pointer to the target BTN which we use to assign it by side effect.

e Chapter 8, page 284, line 25: replace

with

bottom nodes, as indicated by the asterisks in Figure 8.2. Their total infor-

bottom nodes, as indicated by the asterisks in Figure 8.3. Their total infor-

10

Chapter 8, page 285, line 15: replace

nodes, which constitutes a basis by Theorem 7.9. These best basis nodes are dis-
with

nodes, which constitute a basis by Theorem 7.9. These best basis nodes are dis-
Chapter 10, page 331, line 14: replace item 4 in Theorem 10.2:

4. The set {¢y, :n =1,2,...} is dense in S.
with

4. The linear span of {¢y, : n=1,2,...} is dense in S.
Chapter 10, page 341, line 2: replace Equation 10.7:

P =2+ (25 = L)elh] + (clg] - k)" (10.7)
with

P = 25p— (2 = L)elh] — (clg] - clh]) f". (10.7)
Chapter 10, page 341, line 14: replace Equation 10.8:

P =12 = lp+ (1 =27%)c[h] +27%(clg] - c[n]) /"] . (10.8)
with

P =1/ = lp— (1 =27%)c[h] = 27*(clg] — c[h]) "] - (10.8)
Chapter 11, page 363, line 21: replace

Let o(X) C R? be the vector
with

Let o(X) € R? be the vector
Chapter 11, page 364, line —5: replace

The correlation coefficient C(X,Y") of two random variables is defined by the
with

The correlation coefficient C(X,Y") of two random variables X,Y € R is defined by the
Chapter 11, page 364, line —2: replace

Here B(XY) = Zi:;anYn denotes the expectation of the variable zy, etc.
with

Here E(XY) = & ZnNlenYn denotes the expectation of the variable XY, and so on.

11

e Chapter 11, page 365, lines 11-28: replace

Now suppose that © = {z(n)} is numerically smooth, which means that the following as-

sumption is valid:

. +1)—a(n)
<5 [2(n 1. 11.
050 B L + e+ 1] € (11.6)

def

Roughly speaking, this hypothesis guarantees that Az(n) = z(n+ 1) —x(n) remains small
relative to |z(n)| for all n = 1,2,..., N. Then we have the following lower estimate for the

numerator of C'(X,Y):

z(n+1) = z(n)+ Az(n)
= z(n+1) =x(n)—d(jz(n)| + |z(n+ 1))
= a(n+Dx(n) > x(n)? -6 (Jz(n)]* + [z(n + 1)[|z(n)]) ;
z(n) = xz(n+1) - Az(n)
(
x(

)

= z(n) >z(n+1) =6 (lz(n)| + |z(n+1)|)
=

We now average these two inequalities:

z(n+ 1)z(n)

Y

(z(n)* +2(n+1)%) - g (Jz(n)] + |z(n + 1))’

v

(:c(n)2 +z(n+ 1)2) — (\x(n)|2 + |z(n+ 1)\2)
= BE(XY) > B(X?) —20E(X?).

N = N =

We can therefore estimate the correlation coefficient as follows:

BE(X?) — 25E(X?)
E(X?)

1>C(X,Y)> =1—26. (11.7)

with

Likewise, the denominator simplifies to E(XY).
def

n+Da(n) > a(n+1)? =0 (lz(n)|lz(n + D] + a(n + 1)) -

Now put AX = Y — X, and suppose that z = {z(n)} is numerically smooth, namely, that

there is some 0 < ¢ < 1 for which we have:

E(AX?) < 26E(X?). (11.6)

This hypothesis is a discrete analogue to the estimate ||f’[|? < 26| f||?, which is satisfied by
square integrable functions with relatively small derivatives. It yields the following lower

bound for the numerator of C(X,Y):
E(AX?) = E(Y?*+E(X?) -2E(XY) = 2E(X?) - 2E(XY)
~ B(XY)=E(X?) - %E(AXQ) > (1-8)E(X?).

We can therefore estimmate the correlation coefficient as follows:
E(XY)

C(X,Y) = 57

>1—04. (11.7)

12

e Chapter 11, page 366, lines 3-6: replace

Similarly, if we interpret z(N + n) as z(n) for n = 1,2,...,k and 1 < k < N, then the
correlations between more distant pixels will also be close to one:

Proposition 11.1 If + Zgilx(n) =0 and z is numerically smooth, then for X, = x(n)
and Yy, = x(n + k) we have 1 > C(X,Y) > 1 — 2k0. a

Since C(X,Y) = C(Y, X), we can allow negative values of k just by substituting |k|. Notice
too that 1 — 2|k|d ~ (1 — §)2I¥ def Ikl where 1 = (1 — 6§)% ~ 1.
with

Similarly, the correlations between more distant pixel pairs z(n) and z(n + k) will also be
close to one. Since C(X,Y) = C(Y, X), the estimate only depends on |k|:

Proposition 11.1 If z is a numerically smooth N-periodic sequence with +; Zﬁ;lm(n) =
0, then for X, = x(n) and Y, = x(n+ k) we have 1 > C(X,Y) > 1 — k. ad

k| def

Notice that 1 — |k|6 ~ (1 — 0) ¥l where r =1 — 6.

e Chapter 11, page 378: On line 35, replace ‘{Y,, : n = 1,..., N}’ with {V,, : n = 1,...,d}". On line 36,
replace ‘Yq,...,YnN’ with Yq,..., Yy

e Chapter 11, page 381, line 27: replace

dist(U, V) = H(U*V)

with

dist(U,V) = disto (U, V) < /HTV)

e Chapter 11, page 383, line 21: replace

N
1 - -
n=1
with
1 N
’ / /
M = n§:1UanUan

e Chapter 11, page 383, line 22: replace
Here X! = X!, — E(X') is a vector in RY | and E(X’) = 0.
with

Here X, = X,, — E(X) is a vector in R?, and E(X) = 0.

13

e Chapter 11, page 408, line 4: replace

the sparsifiable Hilbert-Schmidt operators S.

with

the sparsifiable Hilbert-Schmidt operators.

e Appendix C, page 445, lines 1 to 17: replace

Coifman 6

((SR15-3.0)/32.0) *SR2
((1.0-SR15)/32.0)*SR2
((3.0-SR15)/16.0)*SR2
((SR15+3.0)/16.0) *SR2
((SR15+13.0)/32.0)*SR2
((9.0-SR15)/32.0) *SR2

High-pass
((9.0-SR15)/32.0) *SR2
(-(SR15+13.0)/32.0) *SR2
((SR15+3.0)/16.0) *SR2
((SR15-3.0)/16.0) *SR2
((1.0-SR15)/32.0)*SR2
((3.0-SR15)/32.0)*SR2

with

-1

N N O

Coifman 6

.2732619512526
3.3789766245748
8.5257202021160
3.8486484686486
.2732619512526
.5655728135792

E-02
E-01
E-01
E-01
E-02
E-02

.85807777478867490
.26969125396205200
.71615554957734980
.07491641385684120
.45687558934434280
.26584265197068560

.26584265197068560
.45687558934434280
.07491641385684120
.71615554957734980
.26969125396205200
.85807777478867490

High-pass

E-02
E-01
E-02
E-01
E-01
E-01

E-01
E-01
E-01
E-02
E-01
E-02

.5655728135792 E-02
.2732619512526 E-02
. 8486484686486 E-01
.5257202021160 E-01
.3789766245748 E-01
.2732619512526 E-02

14

