Ma 322: Biostatistics Conditional Probabilities and Continuous Densities

Prof. Wickerhauser

Wednesday, February 6th, 2013

Suppose that X, Y are continuous random variables, each taking values in the real line \mathbf{R}, with joint probability density function $f(x, y)$. Let us further suppose that this joint $\operatorname{pdf} f$ is a nice continuous function of the two variables x, y.

The pdf conditions for f are that $f(x, y) \geq 0$ for all x, y, and

$$
\int_{x=-\infty}^{\infty} \int_{x=-\infty}^{\infty} f(x, y) d y d x=1
$$

For events $E \subset \mathbf{R}$ and $F \subset \mathbf{R}$, we compute the probability

$$
\operatorname{Prob}(X \in E \text { and } Y \in F) \stackrel{\text { def }}{=} \int_{x \in E} \int_{y \in F} f(x, y) d x d y
$$

For example, if

$$
f(x, y)= \begin{cases}1, & \text { if } 0 \leq x<1 \text { and } 0 \leq y<1, \\ 0, & \text { otherwise },\end{cases}
$$

then $\operatorname{Prob}\left(0 \leq X \leq \frac{1}{3}\right.$ and $\left.\frac{1}{2} \leq Y \leq 1\right)=1 / 6$, the volume under the graph of f over the region $(x, y) \in\left[0, \frac{1}{3}\right] \times\left[\frac{1}{2}, 1\right] \stackrel{\text { def }}{=} E \times F$. The result would be the same with or without the endpoints of E and F.

Note that $\operatorname{Prob}\left(X \in E\right.$ and $\left.Y=y_{0}\right)=0$ for any $E \subset \mathbf{R}$ and any single value y_{0}, because the length of the one-point set $F=\left\{y_{0}\right\}$ is zero so that the integral over F will be zero. Likewise, $\operatorname{Prob}\left(X=x_{0}\right.$ and $\left.Y \in F\right)=0$ for any $F \subset \mathbf{R}$ and any single $x_{0} \in \mathbf{R}$.

The marginal pdfs in X and Y are computed from the joint pdf by partial integration:

$$
\begin{aligned}
f_{X}(x) & \stackrel{\text { def }}{=} \int_{y=-\infty}^{\infty} f(x, y) d y \\
f_{Y}(y) & \stackrel{\text { def }}{=} \int_{x=-\infty}^{\infty} f(x, y) d x
\end{aligned}
$$

These will be continous if f is continuous (by Fubini's theorem), and they allow us to compute marginal probabilities:

$$
\begin{array}{ll}
\operatorname{Prob}_{X}(x \in E) & \stackrel{\text { def }}{=} \int_{x \in E} f_{X}(x) d x=\int_{x \in E} \int_{y=-\infty}^{\infty} f(x, y) d y d x ; \\
\operatorname{Prob}_{Y}(y \in F) & \stackrel{\text { def }}{=} \quad \int_{y \in F}^{\infty} f_{Y}(y) d y=\int_{y \in F} \int_{x=-\infty}^{\infty} f(x, y) d x d y .
\end{array}
$$

By Fubini's theorem, these integrals may be evaluated in either order. For the previous example f, we have

$$
f_{X}(x)= \begin{cases}1, & \text { if } 0 \leq x<1 \\ 0, & \text { otherwise }\end{cases}
$$

and $f_{Y}(y)$ is the same. For this simple example, $\operatorname{Prob}_{X}(x \in E)=|E|$ is just the length of event E, and likewise $\operatorname{Prob}_{Y}(y \in F)=|F|$.

The two conditional probabilities, for X and Y respectively, are defined on pairs of events E, F as follows:

$$
\begin{array}{lll}
\operatorname{Prob}(X \in E \mid Y \in F) & \stackrel{\text { def }}{=} & \frac{\operatorname{Prob}(X \in E \text { and } Y \in F)}{\operatorname{Prob}}{ }_{Y}(y \in F)
\end{array} ;
$$

Notice that if $F=\left\{y_{0}\right\}$ is a single point set, then the numerator and denominator in the definition of $\operatorname{Prob}(X \in E \mid Y \in F)=\operatorname{Prob}\left(X \in E \mid Y=y_{0}\right)$ will both be zero, giving the indeterminate ratio $0 / 0$. Such expressions may be evaluated as limits, putting $F=\left[y_{0}, y_{0}+h\right]$ for some $h>0$ and letting $h \rightarrow 0$. Expanding the numerators and denominators using their definitions as integrals, this gives:

$$
\begin{aligned}
\operatorname{Prob}\left(X \in E \mid Y=y_{0}\right) \quad & \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{\operatorname{Prob}\left(X \in E \text { and } Y \in\left[y_{0}, y_{0}+h\right]\right)}{\operatorname{Prob} Y\left(y \in\left[y_{0}, y_{0}+h\right]\right)} \\
& =\lim _{h \rightarrow 0} \frac{\int_{x \in E} \int_{y=y_{0}}^{y_{0}+h} f(x, y) d y d x}{\int_{y=y_{0}}^{y_{0}+h} f_{Y}(y) d y} \stackrel{\text { def }}{=} \lim _{h \rightarrow 0} \frac{p(h)}{q(h)}
\end{aligned}
$$

This may be evaluated using l'Hôpital's Theorem: if $p \rightarrow 0$ and $q \rightarrow 0$, then the limit of p / q is the limit of p^{\prime} / q^{\prime}. But we can evaluate $p^{\prime}(h)$ and $q^{\prime}(h)$ using the Fundamental Theorem of Calculus:

$$
\begin{aligned}
p^{\prime}(h) & =\frac{d}{d h} \int_{x \in E} \int_{y=y_{0}}^{y_{0}+h} f(x, y) d y d x=\int_{x \in E} f\left(x, y_{0}\right) d x \\
q^{\prime}(h) & =\frac{d}{d h} \int_{y=y_{0}}^{y_{0}+h} f_{Y}(y) d y=f_{Y}\left(y_{0}\right) .
\end{aligned}
$$

Neither $p^{\prime}(h)$ nor $q^{\prime}(h)$ depends on h, so we can evaluate

$$
\operatorname{Prob}\left(X \in E \mid Y=y_{0}\right)=\lim _{h \rightarrow 0} \frac{p^{\prime}(h)}{q^{\prime}(h)}=\frac{\int_{x \in E} f\left(x, y_{0}\right) d x}{f_{Y}\left(y_{0}\right)}=\int_{x \in E} f\left(x \mid y_{0}\right) d x
$$

where we have defined the conditonal pdf $f(x \mid y) \stackrel{\text { def }}{=} f(x, y) / f_{Y}(y)$. Similarly, the other conditional pdf $f(y \mid x) \stackrel{\text { def }}{=} f(x, y) / f_{X}(x)$ gives the formula for one- X-point conditional probabilities:

$$
\operatorname{Prob}\left(Y \in F \mid X=x_{0}\right)=\frac{\int_{y \in F} f\left(x_{0}, y\right) d y}{f_{X}\left(x_{0}\right)}=\int_{y \in F} f\left(y \mid x_{0}\right) d y
$$

CAUTION: except in one-point cases, the conditional pdf does not, in general, integrate to give the conditional probability function, since the ratio of integrals does not always equal the integral of the ratio.

