
Math 322: Biostatistics

Final Examination

NAME:

Due 4:00pm Friday, May 1st, 2020

9 Problems on 4 Pages

You may use the textbook, your class notes, a calculator or computer, and any other previously written

reference, but you may not receive assistance from any other person.

Please use CrowdMark. Identify the commands, input, and output values used in your solutions.

Let MYSID be your student ID number. For all the problems below, set the random number seed to

MYSID where indicated.

1. With the following R commands, generate a simulated joint probability table for the nucleotide pairs

found at adjacent positions (1, 2) in a DNA sequence:

MYSID <-

set.seed(MYSID); f<-runif(16,1,11)

jpdf<-matrix(f/sum(f),nrow=4)

aa1<-c("A1","C1","G1","T1")

aa2<-c("A2","C2","G2","T2")

dimnames(jpdf)<-list(aa1,aa2); jpdf

Use it to answer the following questions:

(a) What is P( C1 )?

(b) What is P( A2 )?

(c) What is P( T1 and G2 )?

(d) What is P( T1 | G2 )?
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2. Let f(x, y) be a discrete joint pdf given by the joint probability table jpdf from Problem 1. Here x is

index 1 (row number) and y is index 2 (column number).

(a) Compute the marginal pdfs fX(x) and fY (y).

(b) Compute the complete conditional pdfs fX|Y (x, y) and fY |X(x, y).

(c) Implement a Gibbs sampler for this joint pdf and simulate taking 10 000 samples. Print the resulting

matrix of counts as well as the normalized matrix that approximates the joint pdf.

3. Generate samples X1 and X2 from two normal populations as follows:

MYSID <-

set.seed(MYSID); X1 <- rnorm(12,0.5,1.5); X2 <- rnorm(13,0.9,1.1)

Using the significance level α = 0.05,

(a) Test the hypotheses H0 : σ1 = σ2 versus HA : σ1 6= σ2.

(a’) Test the hypotheses H0 : σ1 ≤ σ2 versus HA : σ1 > σ2.

Regardless of these results, assume homoscedasticity and then:

(b) Test the hypotheses H0 : µ1 = µ2 versus HA : µ1 6= µ2.

(b’) Test the hypotheses H0 : µ1 ≥ µ2 versus HA : µ1 < µ2.

4. Generate a 200 sample data set as follows:

MYSID <-

set.seed(MYSID); data<- c(rnorm(101,mean=8,sd=0.7), rexp(99,rate=0.6))

(a) Plot the histogram of data.

(b) Find the mean and standard deviation of data.

(b’) Estimate the “standard error” of a 200-sample mean by s/
√

200 using the standard deviation from

part b.

(c) Find the median and the 1st and 3rd quartile values of data.

Now apply the bootstrap method: using the same seed (MYSID), generate 200 replications of 200

samples of data, with replacement, and calculate their means and medians.

(d) Calculate the mean and standard deviation of the 200 bootstrap means.

(d’) Calculate the mean and standard deviation of the 200 bootstrap medians.

(e) Calculate the median and the 1st and 3rd quartile values of the 200 bootstrap means.

(e’) Calculate the median and the 1st and 3rd quartile values of the 200 bootstrap medians.
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5. The following data are frequencies of smallmouth bass (a fish) found with and without flukes (a parasite)

in two noncommunicating lakes:

Lake With flukes Without flukes
Nice 18 51

Sweet 35 44

(a) Using the Yates-corrected χ2 test at the α = 0.05 significance level, test H0: the proportion of bass

with flukes is the same in both lakes.

(b) Use the Fisher exact test at the 0.05 level to test HA: the Lake Nice population bass are less likely

to have flukes than those in the Lake Sweet population.

6. A follow-on study was performed on the same smallmouth bass data of Problem 5 but with the

additional tabulation of gender:

With flukes Without flukes
Lake Male Female Male Female
Nice 13 5 29 22

Sweet 16 19 21 23

(a) Test for mutual independence at the α = 0.05 significance level.

(b) Test for partial independence at the α = 0.05 significance level.

7. Generate a table of multivariate data as follows:

MYSID <-

set.seed(MYSID)

raw0<-cbind(rnorm(40),rnorm(40),rnorm(40),rnorm(40))

mat<-matrix(c(1,4,9,2, 1,-7,-7,6, 2,0,-1,9, 0,1,2,3), 4,4 )

cen<-matrix(c(1,-2,3,-4),1,4); c1<-matrix(rep(1,40),40,1)

raw<-raw0 %*% mat + c1 %*% cen

X<-raw[,1]; Y<-raw[,2]; Z<-raw[,3]; W<-raw[,4]

Species <- c(rep("Klingon",20),rep("Vulcan",20))

mvdata <- data.frame(X,Y,Z,W,Species); mvdata

Pretend that these are 4-variate responses of two imaginary alien species: Klingon (first 20 rows) and

Vulcan (last 20 rows).

(a) Compute the correlation matrix for the four variables with both species’ data combined.

(b) Compute the mean and the covariance matrix of the data for each species individually.

(c) Compute the multiple correlation coefficient R2 for each variable in terms of the other three, and

test H0 : R = 0 at the 0.05 level in each case.
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8. For this problem, use the Klingon and Vulcan data from Problem 7.

(a) Plot all pairs of variables on a 4 × 4 grid of graphs using the R command pairs(). Identify the

plotted points by species using “x” for Klingon and “o” for Vulcan.

(b) Find the principal components of the data and determine how many components are needed to

capture 95% of the variance.

(c) An individual has the following values of the four variables:

Variable Value
X 1.5
Y -1.0
Z 6.0
W -2.0

Use linear discriminant analysis to judge whether it is likelier to be Klingon or Vulcan.

(d) Use Mahalanobis distance to judge whether the individual in part (c) is likelier to be Klingon or

Vulcan.

9. For this problem, use the Klingon and Vulcan data from Problem 7.

(a) Plot a classification tree for the data including cutpoints and variable names.

(b) Find the misclassification rate for the tree in part a.
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