Ma 322: Biostatistics Homework Assignment 2

Prof. Wickerhauser

Read Chapter 7, pages 80–107, of our e-text to review some basic probability density functions and their properties, concentrating especially on the normal pdf. Consult Chapters 1-5 as needed to find function names and syntax to solve the computation problems below.

1. On a single graph, plot the exponential pdf $p(t) = \lambda e^{-\lambda t}$ over the interval $0 \le t \le 3$ for the values $\lambda = 1.5, \lambda = 1$, and $\lambda = 0.5$.

Be sure to choose axes so that the maximum value of each pdf can be seen.

2. On a single graph, plot the normal pdf $p(t) = \frac{1}{\sigma\sqrt{2\pi}}e^{-(t-\mu)^2/2\sigma^2}$ over the interval $-3 \le t \le 3$ for $\mu = 0$ and the values $\sigma = 1.5$, $\sigma = 1$, and $\sigma = 0.5$.

Be sure to choose axes so that the maximum value of each pdf can be seen.

3. On a single graph, plot the Gamma pdf $p(t) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} t^{\alpha-1} e^{-t/\beta}$ over the interval $0 \le t \le 10$ for the values $(\alpha, \beta) = (1, 1), (\alpha, \beta) = (1, 2), (\alpha, \beta) = (2, 1), \text{ and } (\alpha, \beta) = (2, 2).$

Be sure to choose axes so that the maximum value of each pdf can be seen.

4. On a single graph, plot the Beta pdf $p(t) = \frac{1}{B(\alpha,\beta)}t^{\alpha-1}(1-t)^{\beta-1}$ over the interval $0 \le t \le 1$ for the values $(\alpha,\beta) = (1,1), (\alpha,\beta) = (2,5), (\alpha,\beta) = (8,2),$ and $(\alpha,\beta) = (8,5).$ Be sure to choose axes so that the maximum value of each pdf can be seen.

5. On a single graph, plot the Chi squared (χ^2) pdf $p(t) = \frac{1}{2^{k/2}\Gamma(k/2)}t^{k/2-1}e^{-t/2}$ over the interval $0 \le t \le 10$ for the values k = 2, k = 3, and k = 7.

Be sure to choose axes so that the maximum value of each pdf can be seen.

6. On a single graph, plot the binomial pdf $p(k) = \binom{n}{k} s^k (1-s)^{n-k}$ for n = 100 Bernoulli trials over the interval $0 \le k \le n$ for the success rate values s = 0.1, s = 0.2, s = 0.5, and s = 0.9.

Be sure to choose axes so that the maximum value of each pdf can be seen.

7. On a single graph, plot the Poisson pdf $p(k) = e^{-\lambda} \lambda^k / k!$ over the interval $0 \le k \le 100$ for the mean count values $\lambda = 5$, $\lambda = 10$, $\lambda = 20$, and $\lambda = 50$.

Be sure to choose axes so that the maximum value of each pdf can be seen.