Ma 322: Biostatistics Homework Assignment 2

Prof. Wickerhauser

Read Chapter 7, pages 80-107, of our e-text to review some basic probability density functions and their properties, concentrating especially on the normal pdf. Consult Chapters 1-5 as needed to find function names and syntax to solve the computation problems below.

1. On a single graph, plot the exponential pdf $p(t)=\lambda e^{-\lambda t}$ over the interval $0 \leq t \leq 3$ for the values $\lambda=1.5, \lambda=1$, and $\lambda=0.5$.

Be sure to choose axes so that the maximum value of each pdf can be seen.
2. On a single graph, plot the normal pdf $p(t)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(t-\mu)^{2} / 2 \sigma^{2}}$ over the interval $-3 \leq t \leq 3$ for $\mu=0$ and the values $\sigma=1.5, \sigma=1$, and $\sigma=0.5$.

Be sure to choose axes so that the maximum value of each pdf can be seen.
3. On a single graph, plot the Gamma pdf $p(t)=\frac{1}{\beta^{\alpha} \Gamma(\alpha)} t^{\alpha-1} e^{-t / \beta}$ over the interval $0 \leq t \leq 10$ for the values $(\alpha, \beta)=(1,1),(\alpha, \beta)=(1,2),(\alpha, \beta)=(2,1)$, and $(\alpha, \beta)=(2,2)$.

Be sure to choose axes so that the maximum value of each pdf can be seen.
4. On a single graph, plot the Beta pdf $p(t)=\frac{1}{B(\alpha, \beta)} t^{\alpha-1}(1-t)^{\beta-1}$ over the interval $0 \leq t \leq 1$ for the values $(\alpha, \beta)=(1,1),(\alpha, \beta)=(2,5),(\alpha, \beta)=(8,2)$, and $(\alpha, \beta)=(8,5)$.
Be sure to choose axes so that the maximum value of each pdf can be seen.
5. On a single graph, plot the Chi squared $\left(\chi^{2}\right) \operatorname{pdf} p(t)=\frac{1}{2^{k / 2} \Gamma(k / 2)} t^{k / 2-1} e^{-t / 2}$ over the interval $0 \leq t \leq$ 10 for the values $k=2, k=3$, and $k=7$.

Be sure to choose axes so that the maximum value of each pdf can be seen.
6. On a single graph, plot the binomial pdf $p(k)=\binom{n}{k} s^{k}(1-s)^{n-k}$ for $n=100$ Bernoulli trials over the interval $0 \leq k \leq n$ for the success rate values $s=0.1, s=0.2, s=0.5$, and $s=0.9$.
Be sure to choose axes so that the maximum value of each pdf can be seen
7. On a single graph, plot the Poisson pdf $p(k)=e^{-\lambda} \lambda^{k} / k$! over the interval $0 \leq k \leq 100$ for the mean count values $\lambda=5, \lambda=10, \lambda=20$, and $\lambda=50$.

Be sure to choose axes so that the maximum value of each pdf can be seen.

