Math 322: Biostatistics Midterm Examination

Name: \qquad

Wednesday, 9 March 2016
7 Problems on $1+7$ Pages

You may not use any calculation aids or reference materials. You have 50 minutes. Please write your complete solutions on this exam.

Some formulas:

- Bayes' Theorem: $P(B \mid A) P(A)=P(A \mid B) P(B)=P(A \cap B)$.
- Detailed balance equations for a Markov chain transition matrix M with stationary density π :

$$
\pi[i] M[i, j]=\pi[j] M[j, i], \quad \text { for all } i, j .
$$

- Maximums: Function $f=f(x)$ has a maximum at $x=x_{0}$ if and only if $\log f(x)$ has a maximum at $x=x_{0}$.
- Integrals: For all $n>1$ and all $y \geq 1$,

$$
\int_{1}^{y} x^{-n} d x=\left.\frac{x^{-n+1}}{-n+1}\right|_{1} ^{y}=\frac{1}{n-1}\left(1-\frac{1}{y^{n-1}}\right) .
$$

- Derivatives: $\frac{d}{d x} x^{n}=n x^{n-1}, \frac{d}{d x} \log x=\frac{1}{x}, \frac{d}{d x} \log \left[x^{a}(1-x)^{b}\right]=\frac{a}{x}-\frac{b}{1-x}$.

1. Suppose that A, B, C, D are nonempty subsets of X satisfying the following conditions:

- $A \cap B \neq \emptyset$
- $A \cap C \neq \emptyset$
- $B \cap C \neq \emptyset$
- $A \cap B \cap C=\emptyset$
- $A \subset D$
- $B \subset D$
- $C \subset D$

Graph the sets A, B, C, D, X using a Venn diagram.
2. At noon, Guildenstern rolls a fair die. If it shows 1 or 2 spots, he eats an apple.

If the die shows $3,4,5$, or 6 spots, Guildenstern then flips a fair coin. If the coin shows heads he eats an apple, otherwise he eats a banana.
(a) What is the conditional probability that Guildenstern eats an apple given that the die showed 3 spots?
(b) What is the probability that Guildenstern eats an apple? What is the probability that he eats a banana?
(c) What is the conditional probability that the die showed 3 spots given that Guildenstern eats an apple?
3. A sailing club has nine human members $(1, \ldots, 9)$ and four sailboats (A,B,C,D).
(a) How many distinct two-member crews can be formed?
(b) In how many distinct ways can all four sailboats be assigned two-member crews?

Note: A correct formula in terms of binomial coefficients $\binom{n}{k}$ is a sufficient answer.
4. Suppose that the success probability $p \in[0,1]$ has a beta prior pdf

$$
f_{\alpha, \beta}(p)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}
$$

with shape parameters $\alpha=3$ and $\beta=4$. Suppose that an experiment which is expected to have the binomial density

$$
P(k \mid p)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

produces $k=4$ successes in $n=9$ trials.
(a) Find the posterior pdf $P(p \mid k=4)$ for the parameter p. You may ignore normalization constants.
(b) From the pdf of part a, find the MLE, namely the most likely value of p. (Hint: use calculus on the logarithm of the posterior.)
5. Consider the following transition matrix for a 4 -state Markov chain:

$$
M=\left(\begin{array}{cccc}
0.2 & 0.1 & 0.4 & 0.3 \\
0.1 & 0.2 & 0.3 & 0.4 \\
0.4 & 0.3 & 0.2 & 0.1 \\
0.3 & 0.4 & 0.1 & 0.2
\end{array}\right)
$$

(a) Is M irreducible?
(b) Find a stationary distribution for M. (Hint: it is unique.)
(c) Is M reversible?
6. Suppose that K is a positive constant and $f(x)=K x^{-2}$ is a pdf on $1 \leq x<\infty$.
(a) Find K.
(b) Find the cumulative distribution function (cdf) of f.
(c) Find the inverse cdf of f.
7. Suppose that X and Y are discrete random variables that have the following joint pdf:

$$
\begin{aligned}
& \text { Joint pdf of } X \text { and } Y \\
& \qquad \begin{array}{r||c|c|c}
f(X, Y) & Y=1 & Y=2 & Y=3 \\
\hline X=1 & 0.1 & 0.1 & 0.1 \\
X=2 & 0.3 & 0.1 & 0.3
\end{array}
\end{aligned}
$$

(a) Compute the marginal pdfs f_{X} and f_{Y}.
(b) Determine if X and Y are independent.
(c) Compute the complete conditional pdfs $f(X \mid Y)$ and $f(Y \mid X)$.

