Ma 322: Biostatistics Homework Assignment 3

Prof. Wickerhauser

Read Chapter 8, pages 108-134 of our text.

1. Every morning, Rosencrantz flips a coin. If it turns up heads, he rises out of bed and rolls two dice to decide what he will have for breakfast. If the sum of the dice is more than 9 he has eggs, otherwise he has cereal.

If the coin turns up tails, Rosencrantz sleeps for another hour and then has cereal for breakfast.
(a) Assuming a fair coin and fair dice, what is the conditional probability that Rosencrantz eats cereal for breakfast given that the coin flip turned up heads?
(b) Assuming a fair coin and fair dice, what is the probability that Rosencrantz eats eggs for breakfast? What is the probability that he eats cereal for breakfast?

Solution: First build the conditional probability tree, with the probabilities here written in parentheses:

- Coin flip Heads (1/2):
- Dice sum more than 9 (6/36): Eggs
- Dice sum 8 or less: $(30 / 36)$: Cereal
- Coin flip Tails $(1 / 2)$: Cereal
(a) The part of the tree below "Coin flip Heads" has the desired conditional probability: $6 / 36$ that he has eggs, $30 / 36$ that he has cereal, given that the coin flip was Heads.
(b) Multiplying and adding to get the totals, the probability that Rosencrantz eats eggs is $(1 / 2)(6 / 36)+$ $(1 / 2)(0)=3 / 36$ and the probability that he eats cereal is $(1 / 2)(30 / 36)+(1 / 2)(1)=33 / 36$.

2. Use the joint and marginal probability table $8-2$ on page 114 of our text to answer the following questions:
(a) What is $\mathrm{P}(\mathrm{G}$ at P 1$)$?
(b) What is $\mathrm{P}(\mathrm{G}$ at P 2$)$?
(c) What is $\mathrm{P}(\mathrm{G}$ at both P 1 and P 2$)$?
(d) What is $\mathrm{P}(\mathrm{T}$ at $\mathrm{P} 1 \mid \mathrm{G}$ at P 2$)$?

Solution: (a) This is the marginal probability value for column G: 0.2
(b) This is the marginal probability value for row G: 0.1
(c) This is the joint probability value for row G, column $G: 0.0$
(d) This is the $\mathrm{P}(\mathrm{T}$ at P 1 and G at P 2$) / \mathrm{P}(\mathrm{G}$ at P 2$)=0.1 / 0.1=1$.
3. Suppose that X, Y are continuous random variables, each taking values in $[0,1]$, with joint probability density function

$$
f(x, y)=c\left(1-x^{2} y\right)
$$

where c is a constant.
(a) Find c.
(b) Find the marginal density function $f_{X}(x)$.
(c) Find the marginal density function $f_{Y}(y)$.
(d) Are X and1 Y independent? Supply a proof or a counterexample to justify your answer.
(e) Compute $P\left(\left.x<\frac{1}{2} \right\rvert\, y=\frac{1}{2}\right)$.

Solution: (a) Since $\iint f(x, y) d x d y=1$, we must have

$$
1=c \int_{0}^{1} d x \int_{0}^{1} d y\left(1-x^{2} y\right)=c \int_{0}^{1} d x\left(1-\frac{x^{2}}{2}\right)=c\left(\frac{5}{6}\right)
$$

so $c=6 / 5$.
(b) Integrate out the y variable:

$$
f_{X}(x)=\int_{0}^{1} f(x, y) d y=\int_{0}^{1} \frac{6}{5}\left(1-x^{2} y\right) d y=\frac{6}{5}\left(1-\frac{x^{2}}{2}\right) .
$$

(c) Integrate out the x variable:

$$
f_{Y}(y)=\int_{0}^{1} f(x, y) d x=\int_{0}^{1} \frac{6}{5}\left(1-x^{2} y\right) d x=\frac{6}{5}\left(1-\frac{y}{3}\right)
$$

(d) If X and Y were independent then we would have $f(x, y)=f_{X}(x) f_{Y}(y)$ for all $x, y \in[0,1]$. But this is not true: the counterexample $x=1, y=1$ gives $f(1,1)=0$ while $f_{X}(1) f_{Y}(1)=6 / 13$.
(e) First compute the conditional probability density from the definition:

$$
f(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}=\frac{\frac{6}{5}\left(1-x^{2} y\right)}{\frac{6}{5}\left(1-\frac{y}{3}\right)} .
$$

Thus $f(x \mid y=1 / 2)=\left(1-x^{2} / 2\right) /(1-1 / 6)=\frac{6}{5}\left(1-\frac{x^{2}}{2}\right)$. Then
$P(x<1 / 2 \mid y=1 / 2)=\int_{0}^{1 / 2} f(x \mid y=1 / 2) d x=\int_{0}^{1 / 2} \frac{6}{5}\left(1-\frac{x^{2}}{2}\right) d x=\left.\frac{6}{5}\left(x-\frac{x^{3}}{6}\right)\right|_{0} ^{1 / 2}=\frac{6}{5}\left(\frac{1}{2}-\frac{1}{48}\right)=\frac{23}{48}$.
4. Suppose that genotypes $A A, A a$, and $a a$ have respective occurence probabilities $P_{A A}=0.1, P_{A a}=0.2$, and $P_{a a}=0.7$ in a population of diploid organisms.
(a) What is the probability of getting $1 A A, 2 A a$'s, and $7 a a$'s in a random sample of 10 individuals from this population?
(b) What is the probability of getting no $A A$'s in a random sample of 10 individuals from this population?
(c) Simulate taking 8 independent random samples of 10 individuals from this population and use the simulation to estimate $P_{A A}, P_{A a}$, and $P_{a a}$.

Solution: (a) Use the following R commands:

```
pAA<-0.1; pAa<-0.2; paa<-0.7; p<-c(pAA,pAa,paa);
dmultinom(c(1,2,7), size=10, prob=p) # 0.1185902
```

(b) We must sum over all samples of size 10 that have no $A A \mathrm{~s}$. Use the following R commands:

```
pAA<-0.1; pAa<-0.2; paa<-0.7; p<-c(pAA,pAa,paa); s<-0;
for (Aa in 0:10) s<-s+dmultinom(c(0,Aa,10-Aa), size=10, prob=p);
s # 0.3486784
```

(c) Use the following R commands:

5. (a) Let $B=\left(\begin{array}{cc}1 & 1 \\ 1 & -2\end{array}\right)$. Compute $\Sigma=B^{T} B$ and find Σ^{-1}.
(b) Use persp() and contour () to display the bivariate normal density with mean (0,1) and covariance matrix Σ (from part a) over the range $[-9,9] \times[-9,9]$
(c) Use mvrnorm() to simulate 1000 samples from the bivariate normal density of part b. Display the resulting scatterplot.
(d) Display the histograms of the X and Y marginal densities of the simulation in part c.
(e) Calculate the covariance matrix of the samples in part c. Hint: check your work by comparing the sample covariance matrix with Σ.

Solution: (a) Compute

$$
\Sigma=B^{T} B=\left(\begin{array}{cc}
2 & -1 \\
-1 & 5
\end{array}\right)
$$

Then

$$
\Sigma^{-1}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 5
\end{array}\right)^{-1}=\frac{1}{9}\left(\begin{array}{ll}
5 & 1 \\
1 & 2
\end{array}\right)
$$

R commands:

```
B<-matrix(c(1,1,1,-2),2,2); S <- t(B)\%*\\% B; S; solve(S)
```

(b) Use the function bvnpdf () defined on the class website:

```
source("bvnpdf.R");
x<-seq(-9,9,by=0.25); y<-x; z<-bvnpdf(x,y,mu=c(0,1),Sigma=S );
pdf(file="persp.pdf"); persp(x,y,z); dev.off();
pdf(file="contour.pdf"); contour(x,y,z); dev.off();
(c) R commands:
```

```
require(MASS);
set.seed(10293847); sim<-mvrnorm(1000, mu=c(0,1), Sigma=S );
pdf(file="scatter.pdf"); plot(sim); dev.off();
```

(d) R commands:
pdf(file="xmargin.pdf"); hist(sim[,1]); dev.off();
pdf(file="ymargin.pdf"); hist(sim[,2]); dev.off();
(e) R commands:

```
cov(sim); # or var(sim)
    2.1323976 -0.9797013
    -0.9797013 5.1052048
```


Figure 1: HW 3-5b1: Perspective Plot of a Bivariate Normal PDF

Figure 2: HW 3-5b2: Contour Plot of a Bivariate Normal PDF

Figure 3: HW 3-5c: Scatterplot of Samples from a Bivariate Normal PDF

Histogram of sim[, 1]

Figure 4: HW 3-5d1: X Marginal PDF of a Bivariate Normal PDF

Histogram of sim[, 2]

Figure 5: HW 3-5d2: Y Marginal PDF of a Bivariate Normal PDF

