
Ma 322: Biostatistics

Homework Assignment 5

Prof. Wickerhauser

Read Chapter 10, “Stochastic Processes and Markov Chains,” pages 160–184 of our text.

Note: Although our text has no index or table of contents, it is easy to locate words in the electronic version
using the Find function of your favorite PDF reader.

1. Suppose that the list of variables p = (p1, . . . , pK) has a Dirichlet prior density

fα(p) ∝ pα1−1
1 · · · pαK−1

K ,

where α = (α1, . . . , αK) is a list of shape parameters. We perform an experiment that yields counts
n = (n1, . . . , nK) having the multinomial likelihood

Ln(p) ∝ pn1
1 · · · pnK

K .

(a) For what values of α does one get a non-informative Dirichlet prior pdf?

(b) Determine the shape parameters for the posterior pdf Ln(p)fα(p).

Solution: (a) Shape parameters α1 = · · · = αK = 1, namely α = (1, . . . , 1), yield the uniform pdf
fα(p) = 1.

(b) The exponents combine to give the posterior pdf

Ln(p)fα(p) ∝ pn1+α1−1
1 · · · pnK+αK−1

K ,

so the posterior Dirichlet pdf has shape parameters α+ n = (α1 + n1, . . . , αK + nk). 2

2. Suppose that 100 individuals selected randomly from a population are blood-typed and the results are
55 type O, 25 type A, 15 type B, and 5 type AB.

(a) Using a non-informative prior, and assuming Hardy-Weinberg equilibrium, generate a contour plot
of the posterior pdf on the proportions pA and pB of the A and B blood-type alleles, respectively, in
the population. HINT: see r-eg-35.txt on the class website.

(b) Find, at least approximately, the maximum-likelihood estimator of the proportion of A,B, and O
alleles in the population.

Solution: (a) Use the following code modified from r-eg-35.txt

pA <- seq(0,1, by=0.01); pB <- seq(0,1, by=0.01)

z <- matrix(0, nrow=length(pA), ncol=length(pB))

nA <- 25; nB<-15; nO<-55; nAB<-5; # experimental data
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for(i in 1:length(pA)) {

for(j in 1:length(pB) ) {

a <- pA[i]; b <- pB[j];

if( a+b < 1) { # Otherwise not in the domain.

c <- 1-a-b # Shorthand for pO=1-pA[i]-pB[j].

sA <- a**2 + 2*a*c; sB <- b**2 + 2*b*c; sO <- c**2; sAB <- 2*a*b;

z[i,j] <- sA** nA * sB**nB * sO**nO * sAB**nAB

} else { z[i,j] <- 0 }

}

}

(Note: “**” is the same as exponentiation with a carat .̂) Then the requested plot is produced by

pdf("hw5ex2a.pdf"); contour(pA,pB,z,xlab="pA",ylab="pB"); dev.off()

(b) Judging the location of the peak by eye gives pA ≈ 0.15, pB ≈ 0.10, and so pO = 1−pA−pB ≈ 0.75.
2

3. Implement the function Walk1d() on p.167 of our text and graph three 100-step simulations starting
from three random seeds: your student ID, the year of your birth, and the last four digits of your
favorite telephone number.

Solution: Modify the function to make specifying the seeds and printing the plots a bit easier:

Walk1d<-function(n=100, seed=NULL) {

if( !is.null(seed) ) set.seed(seed);

y<-vector(length=n); y[1]<-0;

for(i in 2:n) y[i]<-y[(i-1)]+sample(c(-1,1),1);

plot(1:n,y,type=’l’,ylim=c(-20,20)); }

For this model solution the three seeds will be 123, 4567, and 89120. Then the three requested plots
are produced by

pdf(’w1d123.pdf’); Walk1d(seed=123); dev.off();

pdf(’w1d4567.pdf’); Walk1d(seed=4567); dev.off();

pdf(’w1d89012.pdf’); Walk1d(seed=89012); dev.off();

2

4. Implement the function Walk2d() on p.168 of our text and graph three 500-step simulations starting
from the same random seeds you used in the previous problem.

Solution: Modify the function to make specifying the seeds and printing the plots a bit easier:

Walk2d<-function(n=500, seed=NULL) {

if( !is.null(seed) ) set.seed(seed);

x0<-0; x<-x0+cumsum(sample(c(-1,1),n,replace=TRUE));

y0<-0; y<-y0+cumsum(sample(c(-1,1),n,replace=TRUE));

plot(x,y,xlim=c(-40,40),xlab=’x’,ylim=c(-40,40),ylab=’y’,type=’l’);}
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Then the three requested plots are produced by

pdf(’w2d123.pdf’); Walk2d(seed=123); dev.off();

pdf(’w2d4567.pdf’); Walk2d(seed=4567); dev.off();

pdf(’w2d89012.pdf’); Walk2d(seed=89012); dev.off();

2

5. A restless koala moves among three eucalyptus trees labeled 1, 2, and 3. A patient park ranger watches
and makes notes every morning and evening on the koala’s position, producing the following table:

Koala Tree-Change Counts

Morning Tree Evening Tree Count
1 1 4
1 2 10
1 3 7
2 1 11
2 2 14
2 3 12
3 1 6
3 2 13
3 3 12

(a) Treat the koala’s movements as a Markov process and determine the transition matrix M from this
table of counts.

(b) Starting with a uniform prior distribution on the three trees and assuming the koala’s tree-change
preferences remain the same, compute the posterior koala distribution, namely the stationary distri-
bution determined by M .

Solution: (a) Input the table into a matrix of counts as follows:

M<-matrix(0,nrow=3,ncol=3);

M[1,1]<-4; M[1,2]<-10; M[1,3]<-7;

M[2,1]<-11; M[2,2]<-14; M[2,3]<-12;

M[3,1]<-6; M[3,2]<-13; M[3,3]<-12;

The row is the starting location and the column is the ending location for each move, just as for the
frog situation on p.172 of our text.

To get a matrix of transition probabilities, the matrix elements must be divided by their respective
row sums:

for(i in 1:3) M[i,] <- M[i,]/sum(M[i,])

This produces the transition matrix

M =

 3/21 12/21 8/21
10/37 5/37 20/37
13/31 4/31 7/31

 =

 0.1904762 0.4761905 0.3333333
0.2972973 0.3783784 0.3243243
0.1935484 0.4193548 0.3870968


(b) Take powers of M applied (on the right) to the uniform prior (1/3, 1/3, 1/3) until the result stops
changing in the first few decimal places (10,000 iterations is more than we need, but the computer will
not complain):
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t0<-c(1,1,1)/3; t<-t0; for(i in 1:10000) t<-t%*%M; t

The result is 0.2359551, 0.4157303, 0.3483146, so the koala may be expected to spend 23.6% of
the time in tree 1, 41.6% of the time in tree 2, and 34.8% of the time in tree 3.

Note: Taking powers of just M until its coefficients stop changing gives a matrix whose rows are
identical copies of this stationary distrubution. This may be done by the following R commands:

MM<-M; for(i in 1:10000) MM<-M %*% MM; MM

2

6. Consider the following transition matrix for a 4-state Markov chain:

M =


0.2 0.1 0.4 0.3
0.1 0.2 0.3 0.4
0.3 0.4 0.1 0.2
0.4 0.2 0.3 0.1

 .

(a) Is M periodic or aperiodic?

(b) Is M irreducible?

(c) Is M ergodic?

(d) Does M have a stationary distribution?

(e) Is M reversible?

Solution: First use the following R code to test if limn→∞ Mn exists:

data<-c(2,1,3,4,1,2,4,2,4,3,1,3,3,4,2,1)/10;

M<-matrix(data,4,4); MM<-M; M

for(i in 1:100) MM <- M %*% MM;

MM

The result is

M∞ def
= lim

n→∞
Mn =


0.2535211 0.2288732 0.2711268 0.2464789
0.2535211 0.2288732 0.2711268 0.2464789
0.2535211 0.2288732 0.2711268 0.2464789
0.2535211 0.2288732 0.2711268 0.2464789

 .

(a) The existence of the limit of Mn as n → ∞ implies that M is aperiodic.

(b) M has all nonzero elements, so M is irreducible.

(c) Since M is aperiodic and irreducible, it is ergodic.

(d) M is ergodic by part c, and from M∞ we conclude that M has a stationary state

π = (0.253521, 0.2288732, 0.2711268, 0.2464789).

(e) Check the 16 detailed balance equations with this code:
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pp <- MM[1,]; pp # stationary distribution: any row of MM

dif <- matrix(0,4,4); # initialize to all zeros

for ( i in 1:4 ){

for(j in 1:4){

dif[i,j] <- pp[i]*M[i,j]-pp[j]*M[j,i] # reversible iff all 0s

}}; dif

The final output is the matrix dif of differences:

[,1] [,2] [,3] [,4]

[1,] 0.000000000 0.002464789 0.02007042 -0.02253521

[2,] -0.002464789 0.000000000 -0.03978873 0.04225352

[3,] -0.020070423 0.039788732 0.00000000 -0.01971831

[4,] 0.022535211 -0.042253521 0.01971831 0.00000000

This shows in particular that dif[1, 3] = π[1]M [1, 3]− π[3]M [3, 1] ≈ 0.02 ̸= 0, so M is not reversible.
But any choice of i ̸= j would yield the same conclusion. 2

7. Consider the following transition matrix for a 5-state Markov chain:

F =


0.4 0.3 0.2 0.1 0.0
0.0 0.4 0.3 0.2 0.1
0.0 0.0 0.5 0.3 0.2
0.0 0.0 0.0 0.6 0.4
0.0 0.0 0.0 0.0 1.0

 .

(a) Is F periodic or aperiodic?

(b) Is F irreducible?

(c) Is F ergodic?

(d) Does F have a stationary distribution?

(e) Is F reversible?

Solution: First use the following R code to test if limn→∞ Mn exists:

fdat<-c(c(4,3,2,1,0)/10,c(0,4,3,2,1)/10,c(0,0,5,3,2)/10,

c(0,0,0,6,4)/10,c(0,0,0,0,1)); F<-matrix(fdat,5,5,byrow=T); F

rowSums(F) # check that F is row stochastic

# Iterate F to see if a limit exists:

FF <- F; for(i in 1:100) FF <- FF %*% FF; FF

The result is

F∞ def
= lim

n→∞
Fn =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

 .

(a) The existence of the limit of Fn as n → ∞ implies that F is aperiodic.

(b) Every pair of states i, j with i > j has F (i, j) = 0, so state i can never transition to any state j
with j < i. Thus F is reducible.
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(c) Since F is not irreducible, it is not ergodic.

(d) Though F is not ergodic, the limit F∞ nonetheless exists, and we conclude that F has a stationary
state π = (0, 0, 0, 0, 1). This means that state 5 is absorbing, or equivalently that there are no transitions
possible out of state 5.

(e) Check the 25 detailed balance equations with the stationary distribution from part d:

pp <- FF[1,]; pp # stationary distribution: any row of FF

dif <- matrix(0,5,5); # initialize to all zeros

for ( i in 1:5 ){

for(j in 1:5){

dif[i,j] <- pp[i]*F[i,j]-pp[j]*F[j,i] # reversible iff all 0s

}}; dif

The final output is the 5× 5 matrix dif of differences:

[,1] [,2] [,3] [,4] [,5]

[1,] 0 0 0 0 0

[2,] 0 0 0 0 0

[3,] 0 0 0 0 0

[4,] 0 0 0 0 0

[5,] 0 0 0 0 0

This shows that π[i]F [i, j]− π[j]F [j, i] = 0 for all i, j. Conclude that F is reversible. 2
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Figure 1: HW 5, Ex.2a: Contour plot of posterior pdf in (pA, pB)
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Figure 2: HW 5, Ex.2i: 1-D random walk, seed=123
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Figure 3: HW 5, Ex.2ii: 1-D random walk, seed=4567
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Figure 4: HW 5, Ex.2iii: 1-D random walk, seed=89012
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Figure 5: HW 5, Ex.3i: 2-D random walk, seed=123
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Figure 6: HW 5, Ex.3ii: 2-D random walk, seed=4567
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Figure 7: HW 5, Ex.3iii: 2-D random walk, seed=89012
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