
Ma 322: Biostatistics
Homework Assignment 8

Prof. Wickerhauser

Read Chapter 14, “Hypothesis Testing,” pages 240–262 of our text.

1. Following are 14 samples from a normal population with unknown mean and unknown
standard deviation:

2.68 5.11 3.66 0.87 4.34 4.12 3.79 2.05 2.59 2.56 4.10 1.99 3.46 1.97

(a) Estimate the mean µ, the standard deviation σ, and the variance σ2 from this
sample.

(b) Test the hypothesis H0 : µ = 3.0, using the significance level α = 0.05.

(c) Test the hypothesis H0 : µ ≤ 2.5, using the significance level α = 0.05.

Solution: Read the data by copy-pasting the line of numbers after this command:

x<-scan()

(a) Use the following R code:

mean(x); sd(x); var(x);

That yields the values µ ≈ 3.092143, σ ≈ 1.171752, and σ2 ≈ 1.373003.

(b) Use the following R code:

t.test(x, mu=2.0)

That yields the following output:
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data: x

t = 0.29423, df = 13, p-value = 0.7732

alternative hypothesis: true mean is not equal to 3

95 percent confidence interval:

2.415593 3.768692

sample estimates:

mean of x

3.092143

Since the p-value is greater than 0.05, Do not reject H0.

(c) Use the following R code:

t.test(x,mu=2.5,alternative="greater")

That performs the one-sided test with HA : µ > 2.5 and yields the output

data: x

t = 1.8908, df = 13, p-value = 0.04057

alternative hypothesis: true mean is greater than 2.5

95 percent confidence interval:

2.53755 Inf

sample estimates:

mean of x

3.092143

Since the p-value is less than 0.05, Reject H0. 2

2. Using the sample standard deviation from Exercise 1 and a significance level of α =
0.05, determine:

(a) The power 1− β of the t-test to reject the two-sided null hypothesis on the mean
in Exercise 1b when there is a true difference δ = 0.5.

(b) The power 1− β of the t-test to reject the one-sided null hypothesis on the mean
in Exercise 1c when there is a true difference δ = 0.5.

(c) The number of samples needed to get a power 1 − β = 99% in the t-test of the
two-sided null hypothesis on the mean in Exercise 1b when there is a true difference
δ = 0.5.

(d) The number of samples needed to get a power 1 − β = 99% in the t-test of the
one-sided null hypothesis on the mean in Exercise 1c when there is a true difference
δ = 0.5.
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Solution: First enter the data as in Q.1 so that sd(x) gives the standard deviation
and length(x) gives n. Then use power.t.test():

(a)

power.t.test(n=length(x), sd=sd(x), delta = 0.5, sig.level = 0.05,

power = NULL, strict=TRUE, type="one.sample", alternative="two.sided");

We get the result power = 0.3157387.

(b)

power.t.test(n=length(x), sd=sd(x), delta = 0.5, sig.level = 0.05,

power = NULL, strict=TRUE, type="one.sample", alternative="one.sided");

We get the result power = 0.4475606.

(c)

power.t.test(n=NULL, sd=sd(x), delta = 0.5, sig.level = 0.05, power = 0.99,

strict=TRUE, type="one.sample", alternative="two.sided");

We get the result n = 102.8482, so we would take 103 samples.

(d)

power.t.test(n=NULL, sd=sd(x), delta = 0.5, sig.level = 0.05, power = 0.99,

strict=TRUE, type="one.sample", alternative="one.sided");

We get the result n = 87.98652, so we would take 88 samples. 2

3. (a) Using the following data, and assuming that both populations are normal with
equal variance, test the null hypothesis that male and female turtles have the same
mean serum cholesterol concentrations.

Serum cholesterol (mg/100 ml) of turtles.
Male 248,329,223,313,271,324,255,255,423,332,311,264

Female 341,311,362,371,419,366,246,273,312,331

(b) The following data were found in Table 1 of C. M. Holcomb, C. G. Jackson, Jr., and
M. M. Jackson, “Serum Cholesterol Values in Three Species of Turtles,” J. Wildlife
Diseases 8(1972), pp.181–182. <www.jwildlifedis.org/cgi/reprint/8/2/181.pdf>
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Serum cholesterol (mg/100 ml) in turtles.
Species n Mean S.E. Range Coef. of Var.
C. scripta 8 290.0 ±42.3 174–512 41.2%
T. carolina 31 339.7 ±15.6 178–511 25.6%

Assuming that both populations are normal with equal variance, test the alternative
hypothesis that T. carolina has higher mean serum cholesterol concentrations than C.
scripta.

Solution: (a) Denote the male and female turtle serum cholesterol population means
by µm and µf . The hypotheses are: H0 : µm = µf versus HA : µm ̸= µf . Test these
with a two-tailed two-sample t-test. The R commands are:

male <-c(248,329,223,313,271,324,255,255,423,332,311,264);

female<-c(341,311,362,371,419,366,246,273,312,331);

t.test(male,female, var.equal=TRUE);

The default specification forHA is alternative="two.sided" and need not be invoked
in this case. However, we must specify the non-default assumption of equal population
variances. The p value is 0.1113, so do not reject the null hypothesis. NOTE: for this
experiment, assuming unequal variances and thus using Welch’s approximation gives
a p value of 0.1092 from t.test(male,female), so again we would not reject H0.

(b) Denote the two species by subscripts of 1 (for C. scripta) and 2 (for T. carolina).
The hypotheses are: H0 : µ1 ≥ µ2 versus HA : µ1 < µ2.

This is a one-tailed, two-sample t-test from reduced data. Prepare the test statistic
from the given data as follows. Compute the two sample standard deviations from the
published standard errors:

s1 = SE1

√
n1 = 119.6; s2 = SE2

√
n2 = 86.86.

The homoscedasticity assumption allows us to compute the pooled variance using these
sample standard deviations:

s2p =
ν1s

2
1 + ν2s

2
2

ν1 + ν2
= 8825,

where ν1 = n1 − 1 = 7 and ν2 = n2 − 1 = 30. We now use Welch’s approximation to
compute the variance of the difference of the means:

s2X̄1−X̄2
= s2p

(
1

n1

+
1

n2

)
= 1388.
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Thus sX̄1−X̄2
=
√
s2
X̄1−X̄2

= 37.25. From this and the two means, we form the difference
statistic:

t =
X̄1 − X̄2

sX̄1−X̄2

= −1.33.

This negative t-statistic allows us to use the area under the lower tail as the one-tailed
probability of that value or worse, givenH0. There are ν = ν1+ν2 = n1−1+n2−1 = 37
total degrees of freedom, so the p-value for a one-tailed test of these hypotheses is given
by the cdf pt(t, df=37)≈ 0.095. Using a significance level α = 0.05, we do not reject
the null hypothesis.

The R commands are:

n1<-8; n2<-31; nu1<-n1-1; nu2<-n2-1; nu<-nu1+nu2;

SE1 <- 42.3; SE2<-15.6; s1 <- SE1*sqrt(n1); s2<-SE2*sqrt(n2);

s2p <- (nu1*s1**2+nu2*s2**2)/nu; s1; s2; s2p;

s2xbar<-s2p*(1/n1+1/n2); s2xbar; sxbar<-sqrt(s2xbar); sxbar;

m1<-290.0; m2<-339.7; t<-(m1-m2)/sxbar; t; p<- pt( t, df=nu ); p;

Alternatively, generate fake data with the same means and variances with the program
faker() on the class website, then use t.test():

source("faker.R") # or cut/paste the function into this console

SE1 <- 42.3; n1 <- 8; s1 <- SE1*sqrt(n1); m1<-290.0;

SE2 <- 15.6; n2 <- 31; s2 <- SE2*sqrt(n2); m2<-339.7;

x1 <- faker(n1, mu=m1, sd=s1); # fake C.scripta data

x2 <- faker(n2, mu=m2, sd=s2); # fake T.carolina data

t.test(x1, x2, var.equal=TRUE, alt="less")

2

4. For a fair coin, expect a binomial distribution with “heads” probability p = 1/2. A
certain guilder coin is tossed 2000 times and comes up heads just 962 times.

(a) Rosencrantz does not believe that this guilder is a fair coin. Use the experimental
data and a significance threshold of α = 0.05 to test Rosencrantz’s one-sided hypothesis
HA: heads are less likely than tails in a toss of that coin.

(b) Guildenstern does not share Rosencrantz’s suspicions about the coin. Use the
experimental data and a significance threshold of α = 0.05 to test Guildenstern’s two-
sided hypothesis H0: heads and tails are equally likely in a toss of that coin.

Solution: (a) Rosencrantz’s hypothesis test is one-tailed: H0 : p ≥ 1/2 versus
HA : p < 1/2. The R command to perform this test is:

5



binom.test(x=962,n=2000,p=1/2,alternative="less");

This yields p-value = 0.04675. With significance threshold of α = 0.01, we therefore
reject the null hypothesis in favor of Rosencrantz’s alternative that heads are less
likely than tails in a toss of the guilder coin.

(b) Guildenstern’s hypothesis test is two-tailed: H0 : p = 1/2 versus HA : p ̸= 1/2.
Use this R command to perform this test (the input alternative="two.sided" may
be omitted as it is the default):

binom.test(x=962,n=2000,p=1/2,alternative="two.sided")

This yields p-value = 0.09351. With significance threshold of α = 0.05, we therefore
do not reject the null hypothesis that heads and tails are equally likely in a toss of
the guilder coin. 2

5. (a) Using the data for Problem 3, part a, test the null hypothesis that male and female
turtles have the same serum cholesterol variance.

(b) Using the data for Problem 3, part b, test the alternative hypothesis that C. scripta
has a higher serum cholesterol variance than T. carolina.

Solution: (a) This is a two-tailed test of the hypotheses H0: male and female turtles
have the same serum cholesterol variance, versus HA: male and female turtles have
different serum cholesterol variance. It is performed with an F -test of the variance
ratio, all done by the following R commands:

male <-c(248,329,223,313,271,324,255,255,423,332,311,264);

female<-c(341,311,362,371,419,366,246,273,312,331);

var.test(male,female)

This returns p-value = 0.8392, so with a significance threshold of α = 0.05 we cer-
tainly do not reject H0.

NOTE: the default in var.test() is to test the two-sided alternative hypothesis HA :
σ1 ̸= σ2. For a one-sided HA such as HA : σ1 > σ2, we would call var.test( male,

female, alternative="greater").

(b) This is a one-tailed test of of the hypotheses H0: σ1 ≤ σ2 (C. scripta has no higher
serum cholesterol variance than T. carolina), versus HA: σ1 > σ2 (C. scripta has a
higher serum cholesterol variance than T. carolina).

To perform the test, we must construct the F statistic from the reduced data. So, first
recover the two sample standard deviations from the published standard errors:

s1 = SE1

√
n1 = 119.6; s2 = SE2

√
n2 = 86.86.
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Note that s1 > s2, which is the ordering consistent with HA, so compute the F statistic
with the species 1 quantities in the numerator:

F =
s21
s22

= 1.897.

The numerator degrees of freedom are ν1 = n1 − 1 = 7, and the denominator degrees
of freedom are ν2 = n2 − 1 = 30. The p value for the variance ratio is computed by
pf(F,nu1,nu2)≈ 0.105. Since this is greater than the significance threshold α = 0.05,
do not reject the null hypothesis.

The R commands are:

SE1 <- 42.3; SE2<-15.6; n1<-8; n2<-31; nu1<-n1-1; nu2<-n2-1;

s1s <- n1*SE1**2; s2s<-n2*SE2**2; F <- s1s/s2s; s1s; s2s; F;

p<-pf(F, df1=nu1, df2=nu2, lower.tail=FALSE); p

NOTE: We must specify the non-default lower.tail=FALSE when placing the larger
variance in the numerator of the F ratio to perform the one-tailed test HA: numerator
> denominator.

NOTE: Perform the two-tailed test, HA: numerator ̸= denominator, by using two calls
to pf(), one with F and one with 1/F as the first argument.

Alternatively, generate fake data with the same variances with the program faker()

on the class website, then use var.test():

source("faker.R") # or cut/paste the function into this console

SE1 <- 42.3; n1 <- 8; s1 <- SE1*sqrt(n1); s1 # C.scripta, smaller

SE2 <- 15.6; n2 <- 31; s2 <- SE2*sqrt(n2); s2 # T.carolina, bigger

var.test(faker(n1,sd=s1),faker(n2,sd=s2), alt="greater")

NOTE: the population means are not used by var.test(); they are set to 0 by default
in the fake data when faker(n,mu,sd) is called without specifying mu.

2

6. (a) Test the hypothesis that nucleotides a,c,g,t are equally likely in the GenBank
sequence NM 005369, using the χ2 goodness-of-fit method. Use significance level α =
0.01.

(b) Test the hypothesis that nucleotides a,c,g,t are equally likely in the GenBank
sequence NM 005367, using the χ2 goodness-of-fit method. Use significance level α =
0.01.

Solution: Use the following R code to install the APE package:
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install.packages("ape"); require(ape);

The command install.packages() and subsequent commands read.GenBank()must
be executed on an internet-connected computer.

(a) Obtain sequence "NM 005369" and perform the test:

ref<-c("NM_005369"); data<-read.GenBank(ref);

counts<-base.freq(data,freq=TRUE); counts; chisq.test(counts);

This finds counts of 1255 As, 660 Cs, 822 Gs, and 1127 Ts, yielding X-squared =

231.69, df = 3, p-value < 2.2e-16, indicating that we should definitely reject
the null hypothesis H0: all 4 nucleotides are equally likely, in favor of HA: some of the
nucleotides are more likely than others.

(b) Obtain sequence "NM 005367" and perform the test with slightly different function
calls:

ref<-c("NM_005367"); data<-read.GenBank(ref, as.character=TRUE);

table(data); chisq.test(table(data));

This finds counts of 419 As, 403 Cs, 451 Gs, and 413 Ts, yielding X-squared =

3.0629, df = 3, p-value = 0.382, so we do not reject the null hypothesis H0:
all 4 nucleotides are equally likely. 2

7. (a) How many 2 × 2 contingency tables are there with row sums (2, 5) and column
sums (3, 4)? (Hint: Write down all the solutions.)

(b) Assuming that the rows and columns are independent, compute the exact hyper-
geometric probability of each 2× 2 contingency table in part a.

Solution: (a) This is easily done by hand, parametrizing by the value in the 1,1
location which is the intersection of the smallest-sum row and smallest-sum column.
It can only take the values 0,1, or 2:(

[0] 2
3 2

)
;

(
[1] 1
2 3

)
;

(
[2] 0
1 4

)
.

Thus, there are exactly 3 such tables.

(b) With row sums r1, r2, column sums c1, c2, and total sum n = r1 + r2 = c1 + c2,
under the null hypothesis that the row and column variables are independent, a table
containing frequencies f11, f12, f21, f22 satisfying

r1 = f11 + f12; r2 = f21 + f22; c1 = f11 + f21; c2 = f12 + f22;n = f11 + f12 + f21 + f22,
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will have p = p(f |r, c) given by the hypergeometric probability

r1!r2!c1!c1!

n!f11!f12!f21!f22!
=

(
n

f11, f12, f21, f22

)
(

n
r1, r2

)(
n

c1, c2

) =

(
r1
f11

)(
r2
f21

)
(

n
c1

) =

(
c1
f11

)(
c2
f12

)
(

n
r1

)

Hence the three tables in part a have probabilities

p[0] =
2!5!3!4!

7!0!2!3!2!
=

2

7
; p[1] =

2!5!3!4!

7!1!1!2!3!
=

4

7
; p[2] =

2!5!3!4!

7!2!0!1!4!
=

1

7
.

These may be computed with the following R codes:

r<-c(2,5); c<-c(3,4); n<-sum(r);

prod(factorial(c(r,c)))/prod(factorial(c(n, 0,2,3,2)));

prod(factorial(c(r,c)))/prod(factorial(c(n, 1,1,2,3)));

prod(factorial(c(r,c)))/prod(factorial(c(n, 2,0,1,4)));

Multiply the output decimals by 7 to get the exact rational number results. Equiv-
alently, use the dhyper() function with all three possible values of f11 as the first
argument:

r<-c(2,5); c<-c(3,4); dhyper(c(0,1,2), r[1],r[2],c[1]);

That procedure, however, does not generalize beyond 2× 2 contingency tables. 2

8. The following data are frequencies of bats found with and without rabies in two different
geographic areas:

Area With rabies Without rabies
E 11 112
W 18 139

(a) Using the Yates-corrected χ2 test at the α = 0.05 significance level, test H0: the
incidence of rabies is the same in both areas.

(b) Use the Fisher exact test at the 0.05 level to test if the E population bats are less
likely to have rabies than those in the W population.

Solution: (a) Use the following R commands to compute the results.

data<-c(11,112,18,139);

table<-matrix(data,nrow=2,byrow=TRUE); table

chisq.test(table);
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That yields Pearson’s Chi-squared test with Yates’ continuity correction, with χ2 =
0.23985, df=1, and p-value = 0.6243. Hence do not reject H0.

(b) Enter the same table as for part a, then issue the R command

fisher.test(table, alternative="less")

That performs a one-tailed Fisher Exact Test of HA: E with-rabies percentage is less
than the W with-rabies percentage. It yields p-value = 0.3142, which fails to meet
the α = 0.05 significance level. Hence do not reject H0. 2

9. A follow-on study was performed on the same bats data, similar to that of Problem 8
but with the additional tabulation of gender:

With rabies Without rabies
Area Male Female Male Female
E 6 5 49 63
W 14 4 84 55

(a) Test for mutual independence at the α = 0.05 significance level.

(b) Test for partial independence at the α = 0.05 significance level.

Solution: Let area E/W be the rows (rA) index, gender Male/Female be the columns
(cG) index, and Rabies/No rabies be the tiers (tR) index. Then rA = cG = tR = 2 and
we may fill out the three-dimensional contingency table with the following R commands:

count<-c( 6,5,49,63,14,4,84,55);

# Create factor tags

area <- factor(gl(2,4,labels=c("E","W"))); area

rabies <- factor(gl(2,2,8,labels=c("With","Without"))); rabies

gender <- factor(gl(2,1,8,labels=c("Male","Female"))); gender

Make sure the variables are correctly labeled by examining the various cross-tabulations
of the counts as follows:

xtabs(count ~ area+gender+rabies) # all three factors

xtabs(count ~ gender+rabies) # sum over ‘area’

xtabs(count ~ area+rabies) # sum over ‘gender’

xtabs(count ~ area+gender) # sum over ‘rabies’

xtabs(count ~ area) # sum over ‘gender’ and ‘rabies’

xtabs(count ~ gender) # sum over ‘area’ and ‘rabies’

xtabs(count ~ rabies) # sum over ‘area’ and ‘gender’
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(a) Perform a 3-way test of factor independence as follows:

summary(xtabs(count ~ area+rabies+gender))

That yields Chisq=12.078, df=4, p-value=0.01678, so we rejectH0 at the α = 0.05
level in favor of HA: the three factors are not independent.

(b) There are three tests to perform, one for each pair of factors chosen from the three:
Partial independence: rA versus cG,tR:

summary(xtabs(count ~ gender+rabies))

That yields Chisq = 2.6776, df = 1, p-value = 0.1018, so we do not reject H0:
factors Gender and Rabies are independent at the α = 0.05 level.

Partial independence: tR versus rA,cG

summary(xtabs(count ~ area+gender))

That yields Chisq=8.723, df=1, p-value=0.003143, so we rejectH0 at the α = 0.05
level in favor of HA: factors Area and Gender are not independent.

Partial independence: cG versus rA,tR

summary(xtabs(count ~ area+rabies))

That yields Chisq=0.4724, df=1, p-value=0.4919, so we do not reject H0: factors
Area and Rabies are independent at the α = 0.05 level. 2
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