
Ma 322: Biostatistics

Homework Assignment 9

Prof. Wickerhauser

Read Chapter 15, “ANOVA and Regression,” pages 263–287 of our text.

NOTE: Machine-readable data for the problems below is in http://www.math.wustl.edu/~victor/classes/
ma322/hw09data.txt. Cut and paste from that document into a text file, or into an R variable by use of the
scan() function.

1. The following fake data mimics a study of amino acids in six imaginary species of millipedes:

Alanine concentration in millipede hæmolymph (mg/100 ml)

Species 1 Species 2 Species 3 Species 4 Species 5 Species 6
21.5 14.5 16.0 14.8 12.1 14.4
19.6 17.4 20.3 15.6 11.4 14.7
20.9 15.0 18.5 13.5 12.7 13.8
22.8 17.8 19.3 16.4 14.5 12.0

(a) Test, at the α = 0.05 significance level, the hypothesis H0: There is no difference in mean alanine
concentration among the species. Use one-factor ANOVA.

(b) Test, at the α = 0.05 significance level, the hypothesis H0: There is no difference in mean alanine
concentration between species A and B. Use pairwise t-tests for every pair A,B.

(c) Test, at the α = 0.05 significance level, the hypothesis H0: There is no difference in mean alanine
concentration between species A and B. Use Tukey’s HSD test for every pair A,B.

Solution: (a) Perform a one-factor fixed-effects analysis of variance with species number. The variable
will be Alanine concentration. The R commands to perform this test are:

alanine <- scan()

species <- gl(6,1,24,labels=c("S1","S2","S3","S4","S5","S6"))

anova(lm(alanine ~ species))

The output shows p = 10−6, so Reject H0 in favor of HA: There is a significant difference in mean
alanine concentration among the species.

(b) Perform all pairwise t-tests. The variable will be Alanine concentration. The R commands to
perform this test are:

alanine <- scan()

species <- gl(6,1,24,labels=c("S1","S2","S3","S4","S5","S6"))

pairwise.t.test(alanine,species))

The output shows a table of p-values for the all pairs:
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S1 S2 S3 S4 S5

S2 0.00130 - - - -

S3 0.12588 0.17001 - - -

S4 0.00016 0.61635 0.02835 - -

S5 2.2e-06 0.02835 0.00026 0.17001 -

S6 1.3e-05 0.17001 0.00190 0.61635 0.61635

Conclude that species pairs (1,2), (1,4), (1,5), (1,6), (2,5), (3,4), (3,5), and (3,6) have significantly
different mean Alanine concentrations.

(c) The R commands to perform Tukey’s test are:

alanine <- scan()

species <- gl(6,1,24,labels=c("S1","S2","S3","S4","S5","S6"))

hsd<-TukeyHSD(aov(alanine ~ species)); hsd; plot(hsd); abline(v=0,lty=3);

The output is tabulated below, and is displayed graphically by the plot() and abline() commands.

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = alanine ~ species)

$species

diff lwr upr p adj

S2-S1 -5.025 -8.2908722 -1.7591278 0.0014035 *

S3-S1 -2.675 -5.9408722 0.5908722 0.1471181

S4-S1 -6.125 -9.3908722 -2.8591278 0.0001535 *

S5-S1 -8.525 -11.7908722 -5.2591278 0.0000019 *

S6-S1 -7.475 -10.7408722 -4.2091278 0.0000120 *

S3-S2 2.350 -0.9158722 5.6158722 0.2492856

S4-S2 -1.100 -4.3658722 2.1658722 0.8867240

S5-S2 -3.500 -6.7658722 -0.2341278 0.0316684 *

S6-S2 -2.450 -5.7158722 0.8158722 0.2132913

S4-S3 -3.450 -6.7158722 -0.1841278 0.0349479 *

S5-S3 -5.850 -9.1158722 -2.5841278 0.0002643 *

S6-S3 -4.800 -8.0658722 -1.5341278 0.0022289 *

S5-S4 -2.400 -5.6658722 0.8658722 0.2307618

S6-S4 -1.350 -4.6158722 1.9158722 0.7740767

S6-S5 1.050 -2.2158722 4.3158722 0.9045504

Conclude that species pairs (1,2), (1,4), (1,5), (1,6), (2,5), (3,4), (3,5), and (3,6) have significantly
different mean Alanine concentrations. These pairs are indicated by asterisks in the table, and also by
the intervals that do not contain the vertical dashed line in the figure. 2

2. Test for all factor and interaction effects in the following 3 × 2 fixed-effects analysis of variance with
equal replication:
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Response to Factors A and B

a1 a2 a3

---------- ---------- ----------

b1 b2 b1 b2 b1 b2

---- ---- ---- ---- ---- ----

34.1 35.6 38.6 40.3 41.0 42.1

36.9 36.3 39.1 41.3 41.4 42.7

33.2 34.7 41.3 42.7 43.0 43.1

35.1 35.8 41.4 41.9 43.4 44.8

34.8 36.0 40.7 40.8 42.2 44.5

Solution: The following R commands may also be used to perform the test:

a<-3; b<-2; n<-5; N<-a*b*n; data <- scan()

A <- gl(a,b, N, labels=c("a1","a2","a3"));

B <- gl(b,1, N, labels=c("b1","b2"));

anova(lm(data ~ A*B))

Conclusions:

Source of F value num DF den DF F F0.05(1),... H0?
(Factor A MS) / (Error MS) 2 18 88.580 3.55 Reject
(Factor B MS) / (Error MS) 1 18 5.162 4.41 Reject
(A x B MS) / (Error MS) 2 18 0.272 3.55 Do not reject

(Factor A MS) / (A x B MS) 2 2 326.175 19.0 Reject
(Factor B MS) / (A x B MS) 1 2 19.008 18.5 Reject

The first three rows give the fixed-effects of Factors A and B results. Apparently, factors A and B both
have a significant effect, but their interaction is insignificant at the 0.05 level.

The last three rows give the random-effects results, assuming random factors A and B. Again, factors
A and B have a significant effect, but there is no significant AxB interaction. 2

3. Test for all factor and interaction effects in the following 4 × 3 × 2 fixed-effects analysis of variance,
where ai is the level of factor A, bi is the level of factor B, and ci is the level of factor C.

Response to Factors A, B and C

a1 a2 a3 a4

------------- ------------- ------------- -------------

b1 b2 b3 b1 b2 b3 b1 b2 b3 b1 b2 b3

--- --- --- --- --- --- --- --- --- --- --- ---

c1:

4.1 4.6 3.7 4.9 5.2 4.7 5.0 6.1 5.5 3.9 4.4 3.7

4.3 4.9 3.9 4.6 5.6 4.7 5.4 6.2 5.9 3.3 4.3 3.9

4.5 4.2 4.1 5.3 5.8 5.0 5.7 6.5 5.6 3.4 4.7 4.0

3.8 4.5 4.5 5.0 5.4 4.5 5.3 5.7 5.0 3.7 4.1 4.4

c2:

4.8 5.6 5.0 4.9 5.9 5.0 6.0 6.0 6.1 4.1 4.9 4.3

4.5 5.8 5.2 5.5 5.3 5.4 5.7 6.3 5.3 3.9 4.7 4.1

5.0 5.4 4.6 5.5 5.5 4.7 5.5 5.7 5.5 4.3 4.9 3.8

4.6 6.1 4.9 5.3 5.7 5.1 5.7 5.9 5.8 4.0 5.3 4.7
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Solution: The following R commands may be used to perform the test:

a<-4; b<-3; c<-2; n<-4; N<-a*b*c*n; data <- scan()

A <- gl(a,b, N, labels=c("a1","a2","a3","a4"));

B <- gl(b,1, N, labels=c("b1","b2","b3"));

C <- gl(c,a*b*n, N, labels=c("c1","c2"));

anova(lm(data ~ A*B*C))

That analysis yields the following conclusions:

Source of F value num DF den DF F F0.05(1),... H0?
(Factor A MS) / (Error MS) 3 72 127.794 2.74 Reject
(Factor B MS) / (Error MS) 2 72 47.559 3.13 Reject
(Factor C MS) / (Error MS) 1 72 53.310 3.98 Reject
(A x B MS) / (Error MS) 6 72 1.468 2.23 Do not reject
(A x C MS) / (Error MS) 3 72 7.649 2.74 Reject
(B x C MS) / (Error MS) 2 72 0.048 3.13 Do not reject

(A x B x C MS) / (Error MS) 6 72 1.812 2.23 Do not reject

For the single factor cases, the null hypothesis is H0: there is no significant effect from the factor.

For the multiple factor cases, the null hypothesis is H0: there is no significant interaction between the
factors.

It seems that at the 0.05 level, factors A, B, and C all have a strong effect, and there is strong interaction
between factors A and C, but there is no significant interaction between factor B and the other two
factors. 2

4. Given the following data:

Y X1 X2 X3 X4

51.4 0.2 17.8 24.6 18.9
72.0 1.9 29.4 20.7 8.0
53.2 0.2 17.0 18.5 22.6
83.2 10.7 30.2 10.6 7.1
57.4 6.8 15.3 8.9 27.3
66.5 10.6 17.6 11.1 20.8
98.3 9.6 35.6 10.6 5.6
74.8 6.3 28.2 8.8 13.1
92.2 10.8 34.7 11.9 5.9
97.9 9.6 35.8 10.8 5.5
88.1 10.5 29.6 11.7 7.8
94.8 20.5 26.3 6.7 10.0
62.8 0.4 22.3 26.5 14.3
58.4 6.6 15.7 8.7 26.3
81.6 2.3 37.9 20.0 0.5

(a) Fit the multiple regression Y = α+β1X1+β2X2+β3X3+β4X4 to the data, computing the sample
partial regression coefficients and Y intercept.

(b) Test H0 : β1 = β2 = β3 = β4 = 0 by ANOVA at the 0.05 level.
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(c) Compute the standard error of each partial regression coefficient and test H0 : βi = 0, at the
α = 0.05 level, individually for each i = 1, 2, 3, 4.

(d) Calculate the standard error of estimate and the coefficient of determination.

(e) What is the predicted mean population value Ŷ at X1 = 5.4, X2 = 20.3, X3 = 18.7, X4 = 11.2?

(f) What is the 95% confidence interval for Ŷ in part (e)?

Solution: See hw09R.txt for the R commands used to compute the results.

(a) (b1, b2, b3, b4) = (2.0735, 2.5798, 0.6407, 1.1014); a = −30.1423.

(b) F = 109.1550 with 4 numerator and 10 denominator degrees of freedom. This has a one-tailed
p-value of 3.313456× 10−8, so we reject H0 at the 0.05 level.

(c) H0 is rejected at the 0.05 significance level in part b. For all parameters, ν = 10 = n − m − 1,
giving the following t statistics and their p-values:

Sb1

Sb2

Sb3

Sb4

 =


0.609
0.2904
0.6525
0.3114

 ⇒


t = b1/Sb1

t = b2/Sb2

t = b3/Sb3

t = b4/Sb4

 =


3.336
6.154
−1.845
−5.26

 ⇒ P ≈


0.00536
0.00003
0.08790
0.00015


Hence, at the 0.05 level we reject the null hypotheses β1 = 0, β2 = 0, and β4 = 0, but we do not
reject the null hypotheses β3 = 0.

(d) Coefficient of multiple determination: R2 = 0.9776. Adjusted coefficient of multiple determination:
R2

a = 0.9687. Standard error of estimate: SY ·1,...M =
√
Residual MS = 2.948.

(e) Substitute the values into the multiple regression equation Ŷ = a+ b1X1 + b2X2 + b3X3 + b4X4 to
get Ŷ = 57.74.

(f) Start with the X values used in part (e) to compute Ŷ with 95% confidence interval endpoints:
[47.99, 67.49]. 2

5. Perform a stepwise regression analysis of the data in Problem 4.

Solution: See hw09R.txt for the R commands used to compute the results. The first step is already
done in Problem 4, part (c); variable X3 has the greatest P value for H0 : β = 0, so remove it from
the regression.

In Step 2, repeat parts (a,b,d,c) of Problem 1 on the remaining data set (Y,X1, X2, X4). This gives
(b1, b2, b4) = (1.4740, 1.7031, 0.1720), a = 18.1039. For all parameters, ν = 11 = n−m− 1, giving the
following t values and their likelihoods:Sb1

Sb2

Sb4

 =

 0.1540
0.3968
0.3792

 ⇒

 t = b1/Sb1

t = b2/Sb2

t = b4/Sb4

 =

 9.569
4.292
0.454

 ⇒ P ≈

 1× 10−6

0.00127
0.65884


Hence, at the 0.05 level we reject the null hypotheses β1 = 0 and β2 = 0, but we do not reject the
null hypotheses β4 = 0.

In Step 3, repeat parts (a,b,d,c) of Problem 1 on the remaining data set (Y,X1, X2). This gives
(b1, b2) = (1.4752, 1.5297), and a = 24.8652. For all parameters, ν = 12 = n − m − 1, giving the
following t values and their likelihoods:(

Sb1

Sb2

)
=

(
0.1488
0.1030

)
⇒

(
t = b1/Sb1

t = b2/Sb2

)
=

(
9.912
14.846

)
⇒ P ≈

(
4× 10−7

4× 10−9

)
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Hence, at the 0.05 level we reject the null hypotheses β1 = 0 and β2 = 0, concluding that Y =
α+ β1X1 + β2X2 with α ≈ 24.8652, β1 ≈ 1.4752, and β2 ≈ 1.5297. 2

6. Analyze the five variables in Problem 4 as a multiple correlation.

(a) Compute the simple correlation coefficient for each pair of variables.

(b) Compute the multiple correlation coefficient R for each variable in terms of the other 4, and test
H0 : R = 0 at the 0.05 level in each case.

(c) Compute the partial correlation coefficients for the five variables.

Solution: See hw09R.txt for the R commands used to compute the results.

(a) With the Y variable in the first column (as X0, so to speak), the simple correlation matrix is:

r =
1√

diagSSCP
SSCP

1√
diagSSCP

=


1.0000000 0.6791849 0.86282623 −0.45558037 −0.82482122
0.6791849 1.0000000 0.25194242 −0.80577226 −0.23873447
0.8628262 0.2519424 1.00000000 −0.09089558 −0.96534792
0.4555804 −0.8057723 −0.09089558 1.00000000 −0.04742297
0.8248212 −0.2387345 −0.96534792 −0.04742297 1.00000000


where SSCP is the “sum of squares and cross products” matrix.

(b) Read the F statistic for these tests from the R output:

F =

(
R2

1−R2

)(
Residual DF

Regression DF

)
For the 5 linear models, we have:

R2(Y ∼ X1 +X2 +X3 +X4)
R2(X1 ∼ Y +X2 +X3 +X4)
R2(X2 ∼ X1 + Y +X3 +X4)
R2(X3 ∼ X1 +X2 + Y +X4)
R2(X4 ∼ X1 +X2 +X3 + Y )

 =


0.9776
0.9674
0.9917
0.9314
0.9863

 ⇒ F =


109.2
74.25
298.9
33.97
180

 ⇒ P ≈


3× 10−8

2× 10−7

2× 10−10

9× 10−6

3× 10−9

 .

Each F statistic has 4 and 10 degrees of freedom in the numerator and denominator, respectively. Thus
in all cases, reject the null hypothesis.

(c) The pairwise partial correlation coefficient matrix is given by the off-diagonal terms (the diagonals
are all −1 with the simplified formula that we use):

p
def
= − 1√

diag r−1
r−1 1√

diag r−1

=


−1.0000000 0.8360126 0.7581710 0.4242227 0.4338247
0.8360126 −1.0000000 −0.9121198 −0.8219524 −0.7644270
0.7581710 −0.9121198 −1.0000000 −0.8196893 −0.9100163
0.4242227 −0.8219524 −0.8196893 −1.0000000 −0.8916415
0.4338247 −0.7644270 −0.9100163 −0.8916415 −1.0000000


Notice how this uncovers the weak dependence of Y , the first column variable, on X3 and X4 in rows
4 and 5. The simple correlation matrix R shows a too-strong correlation, in positions (1,4) and (1,5),
between Y and X3 and between Y and X4, respectively. 2
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7. Each of five research papers was read by each of six reviewers. Each reviewer then marked the quality
of the five papers as follows:

Paper
Reviewer 1 2 3 4 5

A 5 4 3 1 2
B 4 5 3 2 1
C 5 4 1 2 3
D 5 3 2 4 1
E 4 5 2 3 1
F 5 4 1 3 2

(a) Calculate the Kendall coefficient of concordance.

(b) Test, at the α = 0.01 significance level, whether the rankings by the six reviewers are in agreement.

Solution: See hw09R.txt for the R commands used to compute the results.

(a) Compute the rank sums and the Kendall concordance coefficient for m = 6 judges and n = 5 ranked
items: 

R1

R2

R3

R4

R5

 =


28
25
12
15
10

 ; W =

∑n
i=1 R

2
i − 1

n [
∑n

i=1 Ri]
2

m2(n3 − n)/12
= 0.7167

(b) For W = 0.7167, the Friedman chi-squared value is χ2
r = m(n− 1)W = 17.2. This has a significant

p < 0.01, so we reject the null hypothesis H0: the six reviewers disagree, in favor of HA: the six
reviewers are in agreement.

2
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