
Ma 4111: Advanced Calculus

Solutions to Homework Assignment 1

Prof. Wickerhauser

Due Tuesday, September 11th, 2012

Please return your solutions to the instructor by the end of class on the due date. You may collaborate
on these problems but you must write up your own solutions. Late homework will not be accepted.

1. Prove that if n ∈ Z+, then

an − bn = (a − b)

n−1
∑

k=0

akbn−1−k.

Solution: First check case n = 1, which is the tautology a − b = a − b. For n > 1, expand the
right-hand side and change variables:

(a − b)

n−1
∑

k=0

akbn−1−k =

n−1
∑

k=0

ak+1bn−1−k −
n−1
∑

k=0

akbn−k =

n
∑

k=1

akbn−k −
n−1
∑

k=0

akbn−k.

Evidently all terms cancel except k = 0 and k = n, giving the result. 2

2. Prove, using induction, that every nonempty subset of Z+ contains a smallest element. This is called
the well-ordering principle.

Solution: Prove the equivalent contrapositive statement “If a subset of Z+ contains no smallest
element, then it must be empty.”

Suppose that S is a subset of Z+ with no smallest element. Let P (n) be the statement “n is not an
element of S.” Then P (1) is true since 1 ∈ S implies S has smallest element 1 as there are no smaller
positive integers. Next, suppose that P (1), . . . , P (n−1) are all true. Then P (n) is true, since otherwise
n would be the smallest element of S. Thus P (n) is true for every positive integer n, so S must be
empty. 2

3. Find the rational number whose decimal expansion is 0.111234 . . ., where the three digits ‘234’ repeat
indefinitely thereafter.

Solution: Let x be the number in question. Note that 103x − x = 111.123 subtracts away all
repetitions of the digit 2, and thus 103

(

103 − 1
)

x is the integer 111,123. Hence,

x =
111, 123

103 (103 − 1)
=

111, 123

999, 000
=

12, 347

111, 000

2
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4. Prove that
√

3 −
√

2 is irrational.

Solution: The problem is that although we know that
√

3 and −
√

2 are individually irrational,
irrationality unlike rationality is not preserved by sums. For example,

√
2 − 1 is irrational since if it

were rational we could add 1 and falsely conclude that
√

2 is rational. Nonetheless, (
√

2 − 1) −
√

2 is
a rational number.

Suppose toward contradiction that x =
√

3 −
√

2 is rational. Then x2 = 3 − 2
√

3
√

2 + 2 is rational, so
we must have that

√
3
√

2 =
√

6 is rational. But 6 is not the square of an integer, so
√

6 is irrational
by theorem 1.10, p.7. 2

5. Prove that between any rational number x and irrational number y > x there is both an irrational
number y′ 6= y and a rational number x′ 6= x.

Solution: First we show that for every real z > 0, there is both a rational and irrational number
between 0 and z. But since the set of integers is unbounded, there is an integer N > 1/z, and the
rational number 1/N satisfies 0 < 1/N < z. For the irrational number, we prove first that the set S of
prime numbers is unbounded above. If S were bounded, then we could list all the primes p1, p2, . . . , pN .
But then consider the positive integer q = 1 + p1p2 · · · pN . This is larger than any prime, but it is
not divisible by any of the listed primes. Since every positive integer has a unique factorization into
primes, this q is either prime and larger than any pi or it must have a prime factor different from
any pi, i = 1, 2, . . . , N . This is a contradiction, so S must be unbounded above. We are therefore
guaranteed that there is a prime integer p ∈ S such that p > 1/z2. But then 0 < 1/

√
p < x, and 1/

√
p

is an irrational number by theorem 1.10, p.7.

Finally, put z = y − x > 0 and let p, q be the rational and irrational numbers between 0 and z. Then
x′ = x + p 6= x is rational while y′ = x + q 6= y is irrational, and both lie strictly between x and y. 2

6. (a) Suppose that A and B are nonempty subsets of R+ which are bounded above with a = supA and

b = supB. For A ◦ B
def
= {x2 + y2 : x ∈ A, y ∈ B}, show that supA ◦ B = a2 + b2.

(b) Find two subsets A and B of R which are bounded above but for which A ◦ B is not bounded
above.

Solution: (a) Since 0 < x ≤ a and 0 < y ≤ b for all x ∈ A and y ∈ B, we conclude that
0 < x2 + y2 ≤ a2 + b2 by the result stated on p.2 of the textbook, near the bottom. Thus a2 + b2

is an upper bound for AB. To show that it is the least upper bound, let ǫ > 0 be given. Let
δ = ǫ

2(a+b) > 0 and pick x ∈ A and y ∈ B with 0 < a − δ < x ≤ a and 0 < b − δ < y ≤ b. Then

0 < a2 + b2 − [2(a + b)δ − 2δ2] < x2 + y2 ≤ a2 + b2. But 2(a + b)δ = ǫ, so 2(a + b)δ − 2δ2 < ǫ, and we
have shown that a2 + b2 − ǫ < x2 + y2 < a2 + b2. Since ǫ was arbitrary, we conclude that a2 + b2 must
be the least upper bound.

(b) Let A = {−1} and B = Z−. Both of these sets are bounded above with supA = supB = −1, but
the subset {(−1)2 + n2 : n = −1,−2,−3, . . .} ⊂ A ◦ B has no upper bound. 2

7. Prove the triangle inequality ‖a + b‖ ≤ ‖a‖ + ‖b‖ for n-component vectors a = (a1, . . . , an) and
b = (b1, . . . , bn):

√

√

√

√

n
∑

k=1

(ak + bk)2 ≤

√

√

√

√

n
∑

k=1

a2
k +

√

√

√

√

n
∑

k=1

b2
k.

Solution: Since all quantities are positive, the triangle inequality holds if its square, the following
inequality, holds:

n
∑

k=1

(ak + bk)2 ≤
n

∑

k=1

a2
k +

n
∑

k=1

b2
k + 2

√

√

√

√

n
∑

k=1

a2
k

√

√

√

√

n
∑

k=1

b2
k
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Figure 1: Graphs for Exercise 9.

Expanding the binomial summands in the left-hand sum and then subtracting
∑n

k=1 a2
k and

∑n
k=1 b2

k

from both sides shows that it is enough to prove the following inequality:

n
∑

k=1

2akbk ≤ 2

√

√

√

√

n
∑

k=1

a2
k

√

√

√

√

n
∑

k=1

b2
k

But dividing both sides by 2, we see that this is just the Cauchy–Schwarz inequality. 2

8. If z = x+ iy for real x, y, define the complex conjugate of z by z̄
def
= x− iy. Prove that z + w = z̄ + w̄,

zw = z̄w̄, zz̄ = |z|2, z + z̄ = 2Re z, and z − z̄ = 2iIm z.

Solution: Write w = s + it, w̄ = s − it for s = Re w and t = Im w. Then

• z + w = (x + s) + i(y + t) = x + s − i(y + t) = x − iy + s − it = z̄ + w̄;

• zw = (xs − yt) + i(xt + sy) = (xs − yt) − i(xt + sy) = xs − (−y)(−t) + i(x(−t) + s(−y)) = z̄w̄;

• zz̄ = (x + iy)(x − iy) = x2 + y2 = |z|2;
• z + z̄ = x + iy + x − iy = 2x = 2Re z;

• z − z̄ = x + iy − (x − iy) = 2iy = 2iIm z.

2

9. Sketch the following subsets of C: |z| = 1, |z| < 1, z + z̄ = 1, z − z̄ = 12, and z + z̄ = |z|2.

Solution: In figure 1, (a) is {|z| = 1}; (b) is {|z| < 1}; (c) is {z + z̄ = 1}; (d) would be {z− z̄ = 12},
but this set is empty; and (e) is {z + z̄ = |z|2}. 2

10. Prove that the n nth roots of 1 are 1, α, α2, . . . , αn−1, where α = e2πi/n, and that α, α2 through αn−1

each solve the equation 1 + z + · · · + zn−1 = 0. (Hint: use Problem 1).

Solution: Since arg(1) = 0, |1| = 1, and n

√
1 = 1, theorem 1.52 on p.22 shows that 1 and αk,

k = 1, 2, . . . , n − 1 in the stated form are all of the nth roots of 1.

Now notice that αk 6= 1 but (αk)n = 1 for any 1 ≤ k ≤ n−1. By problem 1 with a = αk and b = 1, we
see that 0 = (αk)n − 1 = an − 1 = (a− 1)(1 + a + a2 + · · ·+ an−1). For this to hold, since a = αk 6= 1,
we must have 1 + a + a2 + · · · + an−1 = 0. 2
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