
Ma 4111: Advanced Calculus

Solutions to Homework Assignment 2

Prof. Wickerhauser

Due Tuesday, September 25th, 2012

Please return your solutions to the instructor by the end of class on the due date. You may collaborate
on these problems but you must write up your own solutions. Late homework will not be accepted.

Put (a, b) = {{a}, {a, b}} for problems 1 and 2.

1. Prove that (a, b) = (c, d) if and only if a = c and b = d.

Solution: For ⇐, it is evident that (a, b) = (c, d) if a = c and b = d. For ⇒, we note that
(a, b) = (c, d) ⇒ ({a} = {c} or {a} = {c, d}). In the latter case, we must have a = c = d, so in either
case we have a = c. But also, {a, b} = {c, d} or {a, b} = {c}, so either b = d or else b = c = a, and
since {c, d} = {a, b} or {c, d} = {a} we may then conclude that d = a = c = b. 2

2. Define an “ordered n-tuple” (a1, a2, . . . , an) inductively for n > 2 by the formula

(a1, a2, . . . , an)
def
= ( (a1, a2, . . . , an−1), an).

Prove that (a1, a2, . . . , an) = (b1, b2, . . . , bn) if and only if ai = bi for all i = 1, 2, . . . , n.

Solution: The case n = 2 is covered by solution 1 so we consider only n > 2. Again, the ⇐
direction is evident. For ⇒, suppose that (a1, a2, . . . , an) = (b1, b2, . . . , bn) and that the result holds
for all (n − 1)-tuples. Then (a1, a2, . . . , an−1) = (b1, b2, . . . , bn−1) so ai = bi for 1 ≤ i ≤ n − 1 by the
inductive hypothesis, while an = bn because the second members of the outer ordered pairs must be
equal. 2

For problems 3 and 4, define an equivalence relation S to be a relation with the following three
properties:

reflexivity: a ∈ Dom S ⇒ (a, a) ∈ S;

symmetry: (a, b) ∈ S ⇒ (b, a) ∈ S;

transitivity: If (a, b) ∈ S and (b, c) ∈ S then (a, c) ∈ S.

Such a relation generalizes “=” and if (a, b) ∈ S then we say that “a and b are equivalent with respect
to S.”

3. Determine which of the following plane relations are equivalence relations: (a) S = {(x, y) : x2 = y2};
(b) S = {(x, y) : x2 + y2 < 1; (c) S = {(x, y) : xy > 0}. (d) S = {(x, y) : xy < 0}.

Solution: (a) Yes, since it is equivalent to |x| = |y|, which is transitive, reflexive and symmetric.

(b) No, since 0.9 ∈ Dom S but (0.9, 0.9) /∈ S.
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(c) Yes, since it is equivalent to “x and y have the same sign,” which is transitive, reflexive, and
symmetric.

(d) No, since it is equivalent to “x and y have opposite sign,” which is neither transitive, reflexive, nor
symmetric. 2

4. Fix p ∈ Z+ and let S = {(x, y) ∈ Z+ × Z+ : p|(x − y)}. Show that S is an equivalence relation. (If
(x, y) ∈ S, then we say that x and y are congruent modulo p and write x ≡ y (mod p).)

Solution: S is reflexive: p|(x − y) ⇐⇒ p|(y − x). S is symmetric: p|(x − x) since x − x = 0 = 0p.
S is transitive: if p|(x − y) and p|(y − z) then p| [(x − y) + (y − z)] so p|(x − z). 2

For problems 5, 6, 7 and 8, let f : S → T be a function and for each Y ⊂ T define f−1(Y )
def
= {x ∈

S : f(x) ∈ Y }.

5. Prove that X ⊂ f−1 [f(X)] for any X ⊂ S.

Solution: If x ∈ X then f(x) ∈ f(X) so x ∈ f−1 [f(X)] by the definition with Y = f(X). 2

6. Prove that f
[

f−1(Y )
]

⊂ Y for any Y ⊂ T .

Solution: By the definition, for every x ∈ f−1(Y ) we have f(x) ∈ Y . Thus f
[

f−1(Y )
]

⊂ Y . 2

7. Prove that f
[

f−1(Y )
]

= Y for any Y ⊂ T if and only if f(S) = T .

Solution: For ⇒, just take Y = T . Then f
[

f−1(T )
]

= T ⇒ T ⊂ Ran f . But since Ran f ⊂ T we
conclude Ran f = T , and since S = Dom f and f(Dom f) = Ran f we know that f(S) = T .

For ⇐, suppose that f
[

f−1(Y )
]

6= Y for some Y ⊂ T . By solution 6, f
[

f−1(Y )
]

must be strictly

smaller than Y so there must be some y ∈ Y with y /∈ f
[

f−1(Y )
]

. But then there can be no x ∈ S

with f(x) = y, since if there were we would have x ∈ f−1(Y ) ⇒ y = f(x) ∈ f
[

f−1(Y )
]

. Hence f(S)
omits at least y and thus cannot be all of T . 2

8. Prove that the following five statements are equivalent:

(a) f is one-to-one on S.

(b) f(A ∩ B) = f(A) ∩ f(B) for all subsets A and B of S.

(c) f−1 [f(A)] = A for every subset A of S.

(d) If A ⊂ S, B ⊂ S, and A ∩ B = ∅, then f(A) ∩ f(B) = ∅.

(e) If A ⊂ S, B ⊂ S, and A ⊂ B, then f(B − A) = f(B) − f(A).

Solution: We first remark that f(X) = ∅ ⇐⇒ X = ∅. Now we show in steps that (a) ⇒ (b) ⇒
(d) ⇒ (e) ⇒(c)⇒(a). Such a closed loop of implications shows that all the statements are equivalent:

(a)⇒(b): Suppose y ∈ f(A) ∩ f(B). Then there exists a ∈ A and b ∈ B with f(a) = y = f(b). But f
is 1-1 so this means a = b and both belong to A ∩ B. Thus y = f(a) ∈ f(A ∩ B) and we have shown
that f(A) ∩ f(B) ⊂ f(A ∩ B). At the same time, A ∩ B ⊂ A so f(A ∩ B) ⊂ f(A) and A ∩ B ⊂ B so
f(A ∩ B) ⊂ f(B), and therefore f(A ∩ B) ⊂ f(A) ∩ f(B).

(b)⇒(d): If A ∩ B = ∅ then by (b) and the initial remark we compute f(A) ∩ f(B) = f(A ∩ B) =
f(∅) = ∅.

(d)⇒(e): Put C = B − A, so that A ∩ C = ∅. By (d), we first conclude that f(A) ∩ f(C) = ∅ and
thus that f(C) = f(C) − f(A). But C ⊂ B ⇒ f(C) ⊂ f(B) ⇒ f(C) − f(A) ⊂ f(B) − f(A), so
f(C) ⊂ f(B) − f(A). To see the other inclusion, first notice that A ⊂ B ⇒ f(A) ⊂ f(B). It also
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implies that B = A ∪ C. Thus f(B) − f(A) = f(A ∪ C) − f(A) ⊂ f(C). Together these show that
f(B) − f(A) = f(C) = f(B − A).

(e)⇒(c): By solution 5, A ⊂ f−1 [f(A)] for every A ⊂ S, so it is enough to show that C = f−1 [f(A)]−A
is the empty set for every A. But by (e) and solution 6, f(C) = f

(

f−1 [f(A)] − A
)

= f
(

f−1 [f(A)]
)

−
f(A) ⊂ f(A) − f(A) = ∅, so that C = ∅ by the remark.

(c)⇒(a): If y = f(x1) = f(x2), then x2 ∈ f−1({y}) = f−1 [f({x1})] = {x1} by (c), so we must have
x1 = x2. 2

9. Suppose that A is countable. Prove that if B is uncountable, then B − A is uncountable.

Solution: We prove the contrapositive: if B − A is countable, then B must be countable. But if
B − A is countable, then since A is countable the countable (in fact finite) union (B − A) ∪ A must
also be countable. But then B ⊂ (B − A) ∪ A must be countable, since any subset of a countable set
is countable. 2

10. Prove that every uncountable set contains a countably infinite subset.

Solution: If S is uncountable it is infinite, and thus nonempy, so choose a1 ∈ S. Then S1
def
= S −

{a1} is also an infinite set, since otherwise S ⊂ S1 ∪ {a1} would be finite. We proceed to choose an+1

from Sn

def
= S − {a1, . . . , an}, which must also be nonempty for every n since S is infinite: if Sn = ∅

for some n then S ⊂ {a1, . . . , an}∪∅ must be finite. The sequence {an : n ∈ Z+} is a countable infinite
subset of S. 2
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