
Ma 4111: Advanced Calculus

Solutions to Homework Assignment 4

Prof. Wickerhauser

Due Tuesday, October 23rd, 2012

Please return your solutions to the instructor by the end of class on the due date. You may collaborate
on these problems but you must write up your own solutions. Late homework will not be accepted.

For Problems 1–2, we say that a subset A of a metric space M is dense in a set S ⊂ M if A ⊂ S ⊂ A,
where A is the closure of A.

1. Prove that if A is dense in B and B is dense in C, then A is dense in C.

Solution: We have A ⊂ B ⊂ A and B ⊂ C ⊂ B. This implies that A ⊂ C. It thus suffices to show
that B ⊂ A, for then we will have C ⊂ A as well. But if x ∈ B, then each ball B(x; r) contains a point
y of B and thus a point of A since B ⊂ A. If y ∈ A we are done. If y ∈ A′ then we note that B(x; r)
is open so there is a ball B(y; q) ⊂ B(x; r) and this ball B(y; q) contains some point of A. Hence in
either case, the arbitrary ball B(x; r) must contain a point of A so we have shown that x ∈ A. 2

2. A metric space M is called separable if there is a countable dense subset of M . Prove that the Lindelöf
covering theorem holds in any separable metric space.

Solution: First of all, denote by X = {x1, x2, . . .} the dense countable subset of M . Then let F
be an open covering of S ⊂ M : S ⊂

⋃

A∈F A. For each x ∈ S, there is an open set Ax ∈ F with
x ∈ Ax, and since X is dense we have xk ∈ Ax for some positive integer k. We can associate to Ax the
unique least integer k = k(x) for which xk ∈ Ak, and this gives us a map Ax 7→ Z+ from the subcover
S ⊂

⋃

x∈S Ax onto a subset of a countable set; hence the subcover must be countable. 2

3. Suppose that M is a metric space. (a) Prove that if S ⊂ M is closed and T ⊂ M is compact, then
S ∩ T is compact. (b) Prove that if F is an arbitrary collection of closed subsets of M , and some
element of F is compact, then

⋂

K∈F K is compact.

Solution: (a) Let F be an open cover of S ∩ T . Now S ∩ T is closed since both S and T are closed,
so F ∪{M − [S∩T ]} is an open covering of S (in fact it covers all of M). This has a finite subcollection
A1 ∪ . . . ∪ AN ∪ (M − [S ∩ T ]), Ai ∈ F which covers S and therefore also covers S ∩ T ⊂ S, and since
M − [S ∩ T ] contains no points of S ∩ T , we conclude that A1 ∩ . . . ∩AN is a finite subcollection of F
which covers S ∩ T .

(b) Let S ∈ F be one of the compact sets and take T =
⋂

K∈F K. An arbitrary intersection of closed
sets is closed by theorem 3.35b, so T must be closed in M . Thus

⋂

K∈F K = S ∩ T is compact by part
(a). 2

4. Suppose that A is an arbitrary subset of a metric space M . Prove (a) that ∂A = A ∩ M − A; and (b)
that ∂A = ∂(M − A).

Solution: For (a), note that if x ∈ ∂A then x adheres to A and to M − A, since each open ball
around x contains a point from each. For (b), note that M − (M −A) = A so that by part (a) we have
∂(M − A) = M − A ∩ M − (M − A) = M − A ∩ A = ∂(M − A). 2
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5. Prove the following statements about sequences in C:

(a) zn → 0 if |z| < 1, while {zn} diverges if |z| > 1.

(b) If zn → 0 and {cn} is bounded, then cnzn → 0.

Solution: (a) We may assume that |z| > 0, since otherwise the sequence {zn} is constantly 0. If

|z| < 1 then for given ǫ > 0, take M = log ǫ
log |z| . Then if n > M we compute |zn−0| = |z|n < |z|

log ǫ

log |z| = ǫ,

since |z|1/ log |z| = e. On the other hand, if |z| > 1 then {zn} will be unbounded and thus cannot

converge: take any M > 0 and observe that |zn| = |z|n > |z|
log M

log |z| = M as soon as n > log M
log |z| .

(b) Since {cn} is bounded, the sequence {|cn|} is bounded above, so let c = supn |cn| ≥ 0. Then
|cnzn − 0| = |cn||zn| ≤ c|zn|. Since zn → 0, for each ǫ > 0 there is some M > 0 such that n > M ⇒
|zn| < ǫ. So, given ǫ choose the M for ǫ/c (if c > 0) or choose M = 0 if c = 0. Then we wil be assured
that n > M ⇒ c|zn| < ǫ and thus that cnzn → 0. 2

6. Prove that if xn → x and yn → y are convergent sequences in a metric space (S, d), then d(xn, yn) →
d(x, y).

Solution: First note that the triangle inequality gives d(xn, yn) ≤ d(xn, x) + d(x, y) + d(yn, y) ⇒
d(xn, yn) − d(x, y) ≤ d(xn, x) + d(yn, y) and also d(x, y) ≤ d(xn, x) + d(xn, yn) + d(yn, y) ⇒ d(x, y) −
d(xn, yn) ≤ d(xn, x)+d(yn, y). Thus |d(xn, yn)−d(x, y)| ≤ d(xn, x)+d(yn, y). Now let ǫ > 0 be given.
Since xn → x, we can find an integer Mx > 0 such that n > Mx ⇒ d(xn, x) < ǫ/2. Since yn → y,
we can find an integer My > 0 such that n > My ⇒ d(yn, y) < ǫ/2. Put M = max{Mx,My}. Then
n > M ⇒ |d(xn, yn) − d(x, y)| ≤ d(xn, x) + d(yn, y) < ǫ/2 + ǫ/2 = ǫ. 2

7. Suppose that f : R → R is continuous at least at one point x0 ∈ R and that f satisfies f(x + y) =
f(x) + f(y) for all x, y ∈ R. Prove that f(x) = ax for some real number a.

Solution: We shall first prove that f(−x) = −f(x). But f(0) = f(0 + 0) = f(0) + f(0) = 2f(0) ⇒
f(0) = 0, and thus 0 = f(0) = f(x + (−x)) = f(x) + f(−x).

We next prove that f is continuous on all of R. Let x ∈ R be given along with ǫ > 0. Let δ > 0 satisfy
|y−x0| < δ ⇒ |f(y)−f(x0)| < ǫ. Then |z−x| < δ ⇒ |(z−x+x0)−x0| < δ ⇒ |f(z−x+x0)−f(x0)| =
|f(z) − f(x) + f(x0) − f(x0)| = |f(z) − f(x)| < ǫ.

Now, if f(1) = a, then f(n) = an for every integer n by induction: f(n + 1) = f(n) + f(1). Hence
f(x) = ax for each rational x = n/m, since

an = f(n) =

m times
︷ ︸︸ ︷

f(n/m) + . . . + f(n/m) = mf(n/m).

Finally, let x ∈ R be arbitrary and let {xn} ⊂ Q be a sequence of rational points with xn → x. Then
f(xn) → f(x) because f is continuous, so f(x) = limn→∞ axn = ax. 2

8. Give an example of two metric spaces (S, dS) and (T, dT ), a continuous function f : S → T , and a
Cauchy sequence {xn} ⊂ S such that {f(xn)} is not a Cauchy sequence in T .

Solution: Let S = (0, 1), let T = R, let dS and dT be the Euclidean metric and let f(x) = 1/x.
This f is continuous on S precisely because 0 /∈ S. Then xn = 1/n defines a Cauchy sequence in S but
f(xn) = n gives an unbounded sequence which cannot therefore be a Cauchy sequence in R. 2

9. Prove that f is continuous on S if and only if the restriction of f to X is continuous on every compact
subset X ⊂ S. (Hint: first show that if xn → p ∈ S, then the subset X = {p, x1, x2, . . .} is compact).

Solution: Following the hint, we let X =
⋃

A∈F A be an open cover of X. Since p ∈ X, we must
have p ∈ A0 for some A0 ∈ F . The set A0 is open, so there is some ǫ > 0 such that B(p; ǫ) ⊂ A0. Since
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xn → p, there is some M < ∞ such that n > M ⇒ xn ∈ B(p; ǫ) and thus {xM+1, xM+2, . . .} ⊂ A0. But
we also have open sets A1, . . . , AM ∈ F with x1 ∈ A1, . . . , xM ∈ AM , so that X ⊂ A0 ∪ A1 ∪ . . . ∪ AM

is a finite subcover.

For (⇐), note that since f must be continuous on X where p ∈ S and {xn} is any sequence with
xn → p, we must have lim f(xn) = f(lim xn) = f(p) for every point p ∈ S. By theorem 4.16 (p.79 in
the text), f is therefore continuous on S.

For (⇒), note that if f is continuous on S it is continuous at every point of S and thus is continuous
at each point of any subset of S, whether that subset is compact or not. 2

10. Suppose that (S, dS) and (T, dT ) are metric spaces and f : S → T is uniformly continuous on S. Prove
that if {xn} is a Cauchy sequence in S then {f(xn)} is a Cauchy sequence in T .

Solution: Let ǫ > 0 be given and choose δ > 0 such that dS(x, y) < δ ⇒ dT (f(x), f(y)) < ǫ. If
{xn} ⊂ S is a Cauchy sequence, then we can find N < ∞ such that n,m > N ⇒ dS(xn, xm) < δ. But
then n,m > N ⇒ dT (f(xn), f(xm)) < ǫ. Since ǫ was arbitrary, this proves that {f(xn)} is a Cauchy
sequence.

Remark. This result should be compared with the counterexample of Solution 8. 2
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