
Ma 4111: Advanced Calculus

Solutions to Homework Assignment 7

Prof. Wickerhauser

Due Thursday, December 6th, 2012

Please return your solutions to the instructor by the end of class on the due date. You may collaborate
on these problems but you must write up your own solutions. Late homework will not be accepted.

1. Let an = n!
nn for n > 0. Prove that limn→∞

an+1
an

= 1/e.

Solution:

an+1

an
=

(n + 1)!/(n + 1)n+1

n!/nn
=

nn(n + 1)!
(n + 1)n+1n!

=
nn(n + 1)n!

(n + 1)(n + 1)nn!
=

(
n

n + 1

)n

.

The last expression equals
(
1 + 1

n

)−n, which tends to 1/e as n→∞. 2

2. Suppose that {an} is a bounded sequence of real numbers with the property that lim infn→∞ an ≥
lim supn→∞ an. Prove that limn→∞ an exists.

Solution: By theorem 8.3(a) of the text, lim infn→∞ an ≤ lim supn→∞ an. From the hypothesis we
conclude that lim infn→∞ an = lim supn→∞ an. Since {an} is bounded both limits are finite, and thus
by theorem 8.3(b) we conclude that that limn→∞ an exists. 2 2

3. Suppose that
∑∞

n=1 an converges absolutely. Define {bn} by

bn =
{

a2
n, if n is even,
−an

n, if n is odd.

Prove that
∑∞

n=1 bn converges absolutely.

Solution: Since
∑
|an| converges, we must have limn→∞ |an| = 0. Thus we can find an N < ∞,

without loss of generality assuming N > 2, such that n > N ⇒ |an| < 1 ⇒ |a2
n| < |an| and n > N ⇒

|an| < 1 ⇒ | − an
n| < |an|. Thus for all n > N , 0 ≤ |bn| ≤ |an|, and so the series

∑
|bn| converges by

theorem 8.20. 2

4. Determine with proof whether the following series converges:
∞∑

n=1

(√
1 + n6 − n3

)

Solution: Rewrite
∞∑

n=1

(√
1 + n6 − n3

)
=

∞∑
n=1

(√
1 + n6 − n3

) (√
1 + n6 + n3

)
√

1 + n6 + n3
=

∞∑
n=1

1√
1 + n6 + n3

.

This converges by comparison with
∑

1
n3 . 2
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5. Determine with proof whether the following series converges:
∞∑

n=1

(√
1 + n−

√
n
)

Solution: Rewrite
∞∑

n=1

(√
1 + n−

√
n
)

=
∞∑

n=1

(√
1 + n−

√
n
) (√

1 + n +
√

n
)

√
1 + n +

√
n

=
∞∑

n=1

1√
1 + n +

√
n

.

This diverges by comparison with
∑

1√
n
; the summands are larger than 1

2n for all n > 0.

Alternatively, notice that the series telescopes, so that for any M ≥ 1,

M∑
n=1

(√
1 + n−

√
n
)

=
√

M + 1−
√

1.

This partial sum increases without bound as M →∞, so the series diverges. 2

6. Determine with proof whether the following series converges:
∞∑

n=2

(log n)− log n

Solution: We use the integral test, with the substitution x← ey, dx = ey dy:∫ ∞

e

(log x)− log x
dx =

∫ ∞

1

y−yey dy =
∫ ∞

1

ey(1−log y) dy.

This converges by comparison with
∫∞
1

e−y dy <∞, since 1− log y < −1 for all y > e2. 2

7. Find a double sequence {an,m} such that limn→∞ an,m = 0 for all fixed m and limm→∞ an,m = 0 for
all fixed n, but limn,m→∞ an,m does not exist.

Solution: Consider an,m = 1
n−m+0.5 . For each fixed n, 1

n−m+0.5 → 0 as m→∞. Likewise, for each
fixed m, 1

n−m+0.5 → 0 as n→∞. Hence 0 is the only candidate for the limit of the double sequence.
However, an,n = 2 no matter how large a value we take for n. 2

8. Find the Cesàro sum of the complex-valued series
∑∞

n=0 in, where i2 = −1.

Solution: The partial sums sm =
∑m

n=0 in take the values 1, 1 + i, i, and 0, depending on whether
the remainder left after dividing m by 4 is 0,1,2, or 3, respectively. Therefore, for any integer written
m = 4k + m′ ≥ 0 with 0 ≤ m′ < 4, we have

σm =
s0 + s1 + . . . + sm

m
=

k(1 + [1 + i] + i + 0)
4k + m′ +

sm′

4k + m′ .

But since sm′/m → 0 as m → ∞, and k/(4k + m′) → 1
4 as m → ∞, the Cesàro sum is evidently

(1 + i)/2. 2

9. Prove that
∏∞

n=2(1− n−2) converges and evaluate it.

Solution: Convergence follows from theorem 8.52, since the series
∑

n−2 converges. Rewriting
the partial product yields

∏K
n=2

n2−1
n2 =

∏K
n=2

(n−1)(n+1)
n2 , wherein one factor of the numerator cancels

part of a past denominator, while the other cancels part of a future denominator. Hence the product
telescopes down to (2−1)

2
(K+1)

K , which tends to the limit 1
2 as K →∞. 2

2



10. Prove that if a double series converges absolutely, then it converges.

Solution: Write
∑

n,m f(n, m) for the double series and {s(p, q)} for the double sequence of partial
sums. We will show that s(p, q) satisfies the Cauchy condition, namely, that for any ε > 0 we can
find N < ∞ such that |s(p1, q1) − s(p2, q2)| < ε whenever p1 > p2 ≥ N and q1 > q2 ≥ N . But this
follows from the Cauchy condition which is satisfied by S(p, q), the sequence of partial sums of the
series

∑
|f(n, m)|, and from the triangle inequality:

|s(p2, q2)− s(p1, q1)| =

∣∣∣∣∣
p2∑

p1+1

q2∑
1

f(p, q) +
p1∑
1

q2∑
q1+1

f(p, q)

∣∣∣∣∣
≤

p2∑
p1+1

q2∑
1

|f(p, q)|+
p1∑
1

q2∑
q1+1

|f(p, q)|

= |S(p2, q2)− S(p1, q1)| .

Hence {s(p, q)} is a convergent double sequence, and so
∑

f(n, m) is a convergent double series. 2
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