
Ma 4121: Introduction to Lebesgue Integration

Solutions to Homework Assignment 1

Prof. Wickerhauser

Due Thursday, January 31st, 2013

Please return your solutions to the instructor by the end of class on the due date. You may collaborate
on these problems but you must write up your own solutions. Late homework will not be accepted.

1. Let S be a countable set of real numbers. Prove that S has measure zero.

Solution: Let ε > 0 be given, then put δ = ε/3.

Since S is countable, we may list its elements S = {x1, x2, . . .}.
For k = 1, 2, . . ., let Ik = (xk − δ/2k, xk + δ/2k) and note that |Ik| = 2δ/2k.

Since xk ∈ Ik for all k = 1, 2, . . ., we have

S ⊂
∞⋃

k=1

Ik.

But also,
∞∑

k=1

|Ik| =
∞∑

k=1

2δ/2k = 2δ =
2
3
ε < ε.

Since ε > 0 was arbitrary, conclude that S has measure zero. 2

2. Suppose that subset S of R is a set of measure zero.

(a) Prove that every subset of S also has measure zero.

(b) For fixed x ∈ R, define S + x = {s + x : s ∈ S}. Prove that S + x has measure zero.

(c) For fixed finite p > 0, define pS = {ps : s ∈ S}. Prove that pS has measure zero.

Solution: (a) Let T ⊂ S ⊂ R be given. Then any cover of S also covers T .

If S has measure zero, then for every ε > 0 there is a countable open cover of S, and therefore of T ,
by intervals with total length less than ε.

Conclude that T satisfies the definition of a set of measure zero.

(b) If {Ik : k = 1, 2, . . .} is a countable cover of S by open intervals Ik = (ak, bk), then {Ik + x :
k = 1, 2, . . .} is a countable cover of S + x by open intervals Ik + x = (ak + x, bk + x). Check that
|Ik + x| = |Ik| and conclude that S + x has measure zero.

(c) If {Ik : k = 1, 2, . . .} is a countable cover of S by open intervals Ik = (ak, bk), then {pIk : k =
1, 2, . . .} is a countable cover of pS by open intervals pIk = (pak, pbk). Check that |pIk| = p|Ik| and
conclude that pS has measure zero. 2

1



3. Suppose that fn → f and gn → g both converge uniformly on S. Prove that fn − gn converges
uniformly to f − g on S.

Solution: Given ε > 0, find N1 < ∞ and N2 < ∞ such that n > N1 ⇒ (∀x ∈ S) |fn(x)−f(x)| < ε/2
and n > N2 ⇒ (∀x ∈ S) |gn(x)−g(x)| < ε/2. Then if n > N

def= max{N1, N2}, the triangle inequality
assures us that (∀x ∈ S)

∣∣[fn(x)− gn(x)]− [f(x)− g(x)]
∣∣ < ε. 2

4. Define hn(x) = fn(x)gn(x), where fn(x) = (1 + 1
n )x and

gn(x) =
{

1
n , if x = 0 or x is irrational,
b + 1

n , if x = a
b in lowest terms, with b > 0 and a 6= 0.

(a) Prove that {fn} and {gn} converge uniformly on every bounded interval.

(b) Prove that {hn} does not converge uniformly on any bounded interval.

Solution: Suppose that the bounded interval is [a, b].

(a) For {fn}, note that |fn(x) − fm(x)| = |( 1
n −

1
m )x| ≤ max{ 1

n , 1
m} max{|a|, |b|} → 0 as n, m → ∞.

Hence {fn} satisfies the Cauchy condition uniformly on [a, b]. Likewise for {gn}, note that |gn(x) −
gm(x)| = |( 1

n −
1
m )| ≤ max{ 1

n , 1
m} → 0, so {gn} also satisfies the Cauchy condition uniformly on [a, b].

Hence both sequences of functions converge uniformly.

(b) The problem is that each of the functions gn is unbounded on every interval, since every interval
contains rational numbers with arbitrarily large denominators. Suppose x = a/b is a nonzero rational
number expressed in lowest terms, with b > 0. Then fn(x)gn(x) = (1+ 1

n )a
b (b+ 1

n ) = a(1+ 1
n )(1+ 1

bn ),
and taking m > n > 0 without loss of generality we can estimate

∣∣fn(x)gn(x)− fm(x)gm(x)
∣∣ = |a|

[
(1 +

1
n

)(1 +
1
bn

)− (1 +
1
m

)(1 +
1

bm
)
]
≥ |a|/n2.

Now suppose that we are given ε > 0 and take some N < ∞. Since every interval with nonempty
interior contains rational numbers with arbitrarily large numerators a, we can find a rational x in the
interval with numerator |a| > ε(N + 100)2. Then the inequality implies that for N < n, m < N + 100,
we have

∣∣fn(x)gn(x)− fm(x)gm(x)
∣∣ > ε. 2

5. Prove:

(a) If {fn} and {gn} are both uniformly bounded sequences of functions on S, and if fn → f and
gn → g both converge uniformly on S, then fngn → fg will converge uniformly on S.

(b) If {fn} and {1/gn} are both uniformly bounded sequences of functions on S, and if fn → f and
gn → g both converge uniformly on S, then fn/gn → f/g will converge uniformly on S.

Solution: (a) Suppose M is an upper bound for both {|fn|} and {|gn|}. Then M is also an upper
bound for |f | and |g|. Now, given ε > 0, choose N < ∞ so that n > N implies |fn − f | < ε

2M and
|gn − g| < ε

2M . By the triangle inequality, |fngn − fg| ≤ |fn − f ||gn|+ |f ||gn − g| < ε.

(b) The proof in (a) works for fn/gn. 2

6. Assume that

i. fn → f uniformly on S;

ii. Each fn is continuous on S;

iii. The sequence {xn} ⊂ S converges to a ∈ S.
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Prove that fn(xn) → f(a) as n →∞.

Solution: Let ε > 0 be given. Since fn → f uniformly, we can find N1 < ∞ sufficiently large so that
n > N1 implies that (∀x ∈ S)|fn(x)− f(x)| < ε/2. In particular, this means |fn(xn)− f(xn)| < ε/2.

Since f is the uniform limit of a sequence of continuous functions, it is continuous. Thus we can find
δ > 0 such that |x − a| < δ ⇒ |f(x) − f(a)| < ε/2. Since xn → a, we can find N2 < ∞ sufficiently
large so that n > N2 ⇒ |xn − a| < δ ⇒ |f(xn) − f(a)| < ε/2. But then by the triangle inequality, if
n > max{N1, N2},

|fn(xn)− f(a)| = |fn(xn)− f(xn) + f(xn)− f(a)| ≤ |fn(xn)− f(xn)|+ |f(xn)− f(a)| < ε

2

7. Find counterexamples to show that each assumption i, ii, and iii is necessary in the previous problem.

Solution: Suppose we eliminate (i). Take fn(x) = xn on S = [0, 1] and take the sequence xn = 1− 1
n .

Then fn(xn) = (1− 1
n )n → 1

e as n →∞, while xn → a = 1 and fn → f where

f(x) =
{

1, if x = 1,
0, if 0 ≤ x < 1.

Thus f(a) = 1 6= 1
e = limn→∞ fn(xn).

Alternatively, if we eliminate (ii), let fn(x) = 1
x + 1

n when x 6= 0 with fn(0) def= 0 on S = [0, 1]. Then
fn → f uniformly on S, where f(x) = 1/x when x 6= 0 and f(0) = 0, since (∀x ∈ S)|fn(x)− fm(x)| ≤
max{ 1

n , 1
m} and thus {fn} satisfies the uniform Cauchy condition for sequences of functions. However,

if we take xn = 1
n , then xn → a = 0, and f(a) = 0 while fn(xn) = n + 1

n →∞ as n →∞.

Without assumption (iii), the conclusion cannot even be stated, but we will find an example in which
limn→∞ fn(xn) fails to exist. Namely, take fn(x) = x on S = [0, 1] and take xn = 1 if n is odd and
xn = 0 if n is even. Then fn → f(x) = x uniformly because it is a constant sequence of functions, but
fn(xn) alternates between 0 and 1 just like {xn} and therefore cannot have a limit. 2

8. Let f(x) = e−1/x2
if x 6= 0, with f(0) def= 0. Prove that f (n)(0) exists and equals 0 for each n =

0, 1, 2, . . ..

Solution: First use induction on n to prove the following statement: f (n) = Rn(x)f(x), where
Rn(x) is a rational function. This is clearly true for n = 0. For n = 1, note that d

dxf(x) =
2
x3 e−1/x2

= R1(x)f(x), where R1(x) def= 2
x3 is a rational function. Now suppose the formula holds

for n = k. Then f (k+1)(x) = d
dxf (k)(x) = R′k(x)f(x) + Rk(x)f ′(x) = [R′k(x) + Rk(x)R1(x)] f(x),

and Rk+1(x) def= R′k(x) + Rk(x)R1(x) is a rational function since differentiation and multiplication
preserves that class.

Second, we claim that for any rational function R(x), we have limx→0 R(x)f(x) = 0. If R(x) is
continuous at 0, the result follows from the product limit theorem since f(x) → 0 as x → 0. If
R(x) is discontinuous at 0, then its denominator polynomial must have a root at 0 so we can write
R(x) = Q(x)x−k where k > 0 and Q(x) is a rational function which is continuous at x = 0. Hence it
suffices to show that x−kf(x) → 0 as x → 0 for every k > 0. Without loss of generality, it suffices to
prove this for x → 0+. But

log
[
x−kf(x)

]
= −k log x− 1

x2
=

kx2 log x + 1
−x2

.

The numerator tends to 1 as x → 0+, since x2 log x → 0 as x → 0+ which was shown using L’Hôpital’s
theorem. The denominator tends to 0− as x → 0. Thus the ratio tends to−∞ and therefore x−kf(x) →
0 as x → 0. 2
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9. Suppose f(x) is represented by the power series f(x) =
∑∞

n=0 anxn, where a0 = a1 = 3 while an = 1
for n ≥ 2. What is the power series for 1/f(x), and its radius of convergence?

Solution: The given power series has a radius of convergence of 1, and represents the function
f(x) = 3−2x2

1−x , which we discover by rewriting the series as

∞∑
n=0

anxn = 2 + 2x +
∞∑

n=0

xn = 2 + 2x +
1

1− x
=

3− 2x2

1− x
.

The reciprocal is 1/f(x) = 1−x
3−2x2 , which has power series

1− x

3

(
1

1− 2x2

3

)
=

1− x

3

∞∑
n=0

(
2
3
x2

)n

=
∞∑

n=0

[
1
3

(
2
3

)n

x2n − 1
3

(
2
3

)n

x2n+1

]
=

∞∑
n=0

bnxn,

where b2n = 1
3

(
2
3

)n (even terms) while b2n+1 = − 1
3

(
2
3

)n (odd terms). The reciprocal series has radius
of convergence

√
3/2, by the ratio test. 2

10. Let fn(x) be the real-valued function defined on [0, 1] by the formula

fn(x) =

 0, if 0 ≤ x < 2−n;
2n/2, if 2−n ≤ x ≤ 21−n;
0, if 21−n < x ≤ 1,

for n = 1, 2, . . .. Prove that {fn} converges pointwise to 0 on [0, 1], but l.i.m.n→∞fn 6= 0.

Solution: To show pointwise convergence, suppose that x ∈ [0, 1]. If x = 0, then fn(x) = 0 for all
n = 1, 2, . . ., so that limn→∞ fn(0) = 0. If x > 0, then fn(x) = 0 for all n satisfying 21−n < x, which
is all n > 1− log2 x. Hence again, limn→∞ fn(x) = 0.

Now suppose l.i.m.n→∞fn = 0; then for ‖g‖ def=
∫ 1

0
|g(x)|2 dx we would have ‖fn‖ → 0 as n →∞. But

elementary calculus allows us to evaluate ‖fn‖ = 1 for all n = 1, 2, . . ., contradicting our assumption.
Thus either the limit in mean fails to exist, or it exists and equals some function other than 0. But
since the pointwise limit is the 0 function, there are no other candidates, hence the limit in mean does
not exist. 2
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