
Ma 4121: Introduction to Lebesgue Integration

Solutions to Homework Assignment 5

Prof. Wickerhauser

Due Thursday, April 11th, 2013

Please return your solutions to the instructor by the end of class on the due date. You may
collaborate on these problems but you must write up your own solutions. Late homework will
not be accepted.

1. Verify that the trigonometric system { 1√
π

sinnx : n = 1, 2, . . .} ∪ { 1√
π

cosnx : n = 1, 2, . . .} ∪
{ 1√

2π
} is orthonormal in L2([0, 2π]).

Solution: Compute the integrals:
(1) 1√

2π
is orthogonal to 1√

π
sinnx and 1√

π
cosnx for every n = 1, 2, . . ., since∫ 2π

0
1 · sinnx dx =

∫ 2π

0
1 · cosnx dx = 0.

It has norm 1 since
∫ 2π
0

(
1√
2π

)2
dx = 1.

(2) 1√
π

sinnx is orthogonal to 1√
π

cosmx for every n,m = 1, 2, . . ., since∫ 2π

0
sinnx · cosmxdx =

1
2

∫ 2π

0
[sin(n+m)x+ sin(n−m)x] dx = 0.

(3) 1√
π

sinnx is orthogonal to 1√
π

sinmx for every n,m = 1, 2, . . . with n 6= m, since then
n−m 6= 0 and n+m 6= 0 and thus∫ 2π

0
sinnx · sinmxdx =

1
2

∫ 2π

0
[cos(n−m)x− cos(n+m)x] dx = 0.

(4) 1√
π

cosnx is orthogonal to 1√
π

cosmx for every n,m = 1, 2, . . . with n 6= m, since then
n−m 6= 0 and n+m 6= 0 and thus∫ 2π

0
cosnx · cosmxdx =

1
2

∫ 2π

0
[cos(n−m)x+ cos(n+m)x] dx = 0.

(5) Observing that cos2 nx + sin2 nx = 1 for all x and all n = 1, 2, . . ., and that cos2 nx and
sin2 nx have the same integral on [0, 2π] since they are each 2π-periodic and each is just a
translate by π/2 of the other, we conclude that∫ 2π

0
cos2 nx dx =

∫ 2π

0
sin2 nx dx =

1
2

∫ 2π

0
1 dx = π.
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Hence the factor 1√
π

makes them normal. 2

2. Let {φ0, φ1, . . .} ⊂ X be an orthonormal system of functions, where X is an inner product
space in which ‖f‖ = 0 ⇐⇒ f = 0. Prove that the following three statements are equivalent:
(a) If 〈f, φn〉 = 〈g, φn〉 for all n = 0, 1, 2, . . ., then f = g.
(b) If 〈f, φn〉 = 0 for all n, then f = 0.
(c) If T is an orthonormal system such that {φ0, φ1, . . .} ⊂ T , then T = {φ0, φ1, . . .}.

Solution: We prove that a⇒b⇒c⇒a.
(a⇒b): Since 〈0, φn〉 = 0 for all n = 0, 1, 2, . . ., use (a) to conclude that f = 0.
(b⇒c): Suppose ψ ∈ T but ψ /∈ {φ0, φ1, . . .}. Then 〈ψ, φn〉 = 0 by orthogonality, so ψ = 0 by
(b).
(c⇒a): Suppose we have 2 functions f, g with f 6= g but 〈f, φn〉 = 〈g, φn〉 for all n = 0, 1, 2, . . ..
Then h = f−g 6= 0 is orthogonal to φn for all n and ‖h‖ 6= 0, so T def= {h/‖h‖}∪{φ0, φ1, . . .}
is an orthonormal system which contains {φ0, φ1, . . .}. By (c), h = φn for some n. But then
1 = 〈h, φn〉 = 〈f, φn〉−〈g, φn〉 ⇒ 〈f, φn〉 6= 〈g, φn〉, contradicting our assumption about f and
g. 2

For Problems 3 and 4, define C([0, 1]) to be the space of complex-valued continuous func-
tions on the compact interval [0, 1], with 〈f, g〉 def=

∫ 1
0 f(t)ḡ(t) dt for f, g ∈ C([0, 1]), and

‖f‖ def=
√
〈f, f〉.

3. For f ∈ C([0, 1]), prove that ‖f‖ = 0 ⇐⇒ f = 0.

Solution: If f ∈ C([0, 1]) and f(t0) 6= 0 for some t0 ∈ [0, 1], then |f(t0)|2 6= 0 is a continu-
ous, hence integrable function on [0, 1] which satisfies (∃ε > 0)(∀t ∈ B(t0, ε)∩ [0, 1]) |f(t)|2 >
1
2 |f(t0)|2. But then

‖f‖2 ≥
∫

B(t0,ε)∩[0,1])
|f(t)|2 dt ≥

(
ε

2

)(
1
2
|f(t0)|2

)
> 0.

Thus f 6= 0⇒ ‖f‖ 6= 0, i.e., ‖f‖ = 0⇒ f = 0. The converse f = 0⇒ ‖f‖ = 0 is trivial since
‖0‖2 =

∫ 1
0 02 dt = 0. 2

4. Prove that the set {e2πint : n ∈ Z} ⊂ C([0, 1]) is an orthonormal system satisfying all three
conditions of Problem 2.

Solution: The functions are continuous and are seen to be orthonormal by an argument
similar to that in Problem 1. They belong to a space C([0, 1]) which by Problem 3 satisfies the
hypothesis in Problem 2. Hence it suffices to show that any one of the equivalent conditions
(a), (b), or (c) of Problem 2 is satisfied by {e2πint : n ∈ Z}.

We choose (b). Put φn(t) def= e2πint and suppose that 〈f, φn〉 = 0 for all n ∈ Z. Then the
(exponential) Fourier coefficients generated by f are all zeroes, and so the sine/cosine Fourier
coefficients are also all zeroes. Thus the Fourier series generated by f converges trivially to 0
at each t ∈ [0, 1]. By Fejér’s theorem it converges to f(t), so we conclude that f = 0. 2
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5. Put I = [0, 1] ⊂ R. Suppose that H = {ψn : n = 0, 1, 2, . . .} ⊂ L2(I) is the orthogonal system
of Haar functions defined for n = 0 by ψ0 = 1I , and for 0 < n = 2j + k with 0 ≤ k < 2j is
defined by

ψn(x) =



1, if k
2j ≤ x <

k+ 1
2

2j ,

−1, if k+ 1
2

2j ≤ x < k+1
2j ,

0, otherwise.

Show that if f ∈ L2(I) and 〈f, ψn〉 = 0 for all n = 0, 1, 2, . . ., then f = 0 a.e. on I.

Solution: As shown in class, for a bounded interval such as I we have L2(I) ⊂ L(I).
Thus, given f ∈ L2(I), we may find a sequence of linear combinations of Haar functions,
{hn : n = 1, 2, . . .} ⊂ spanH, satisfying

lim
n→∞

‖f − hn‖ = 0.

With this sequence, given ε > 0 we may find N <∞ such that

n ≥ N ⇒ ‖f − hn‖ < ε.

Now (∀n) 〈f, ψn〉 = 0 ⇒ (∀n) 〈f, hn〉 = 0. In particular, choosing n ≥ N gives

‖f‖2 = |‖f‖2 − 0| = |‖f‖2 − 〈f, hn〉 | = | 〈f, f − hn〉 | ≤ ‖f‖‖f − hn‖.

where we have used the Cauchy-Schwarz inequality at the last step.
Hence, either ‖f‖ = 0 < ε or else we may divide by ‖f‖ to get ‖f‖ ≤ ‖f − hn‖ < ε. Since
ε > 0 was arbitrary, conclude that ‖f‖ = 0.
Finally, note that ‖f‖ = 0 iff f = 0 a.e. on I. 2

6. Show that x = π − 2
∞∑

n=1

sinnx
n

, if 0 < x < 2π.

Solution: The Fourier coefficients of the 2π-periodic function that agrees with f(x) = x
on (0, 2π) are evaluated as follows:

an =
1
π

∫ 2π

0
x cosnx dx = 0, if n > 0; a0 =

1
π

∫ 2π

0
x dx = 2π;

bn =
1
π

∫ 2π

0
x sinnx dx = − 2

n
, if n > 0.

Thus x = f(x) ∼ a0

2
+

∞∑
n=1

an cosnx+
∞∑

n=1

bn sinnx = π − 2
∞∑

n=1

sinnx
n

.

Since f(x) = x has bounded variation on every compact interval, Jordan’s test (Theorem
11.16) implies that the Fourier series for f(x) converges to [f(x+) + f(x−)]/2 at each x ∈
(0, 2π). But this is f(x), since f is continuous at each of those points. 2
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7. Show that
x2

2
= πx + 2

∞∑
n=1

cosnx
n2

− 2
∞∑

n=1

1
n2

, if 0 ≤ x ≤ 2π. Conclude that
∞∑

n=1

1
n2

=
π2

6
.

(Hint: integrate the formula from Problem 6.)

Solution: By Theorem 11.6c, the Fourier series in Solution 6 can be integrated term by
term and the integrated series converges uniformly on every interval. Thus, for 0 ≤ x ≤ 2π,

x2

2
=
∫ x

0
t dt = πx− 2

∞∑
n=1

∫ x

0

sinnt
n

dt = πx+ 2
∞∑

n=1

cosnx
n2

− 2
∞∑

n=1

1
n2
.

Now put x = π. Then cosnx = (−1)n and by evaluating both sides we get the identity

π2

2
= π2 + 2

∞∑
n=1

(−1)n

n2
− 2

∞∑
n=1

1
n2
⇒ π2

2
= 4

∞∑
k=1

1
(2k − 1)2

.

But since the series
∑∞

n=1
1
n2 converges absolutely, we can rearrange the summation into the

odd and even parts. The even part is just 1/4 of the original series, and we have

∞∑
n=1

1
n2

=
∞∑

k=1

1
(2k)2

+
∞∑

k=1

1
(2k − 1)2

⇒
∞∑

n=1

1
n2

=
4
3

∞∑
n=1

1
(2k − 1)2

=
π2

6
.

Putting this into the last sum in the Fourier series gives the result. 2

For Problems 8 and 9, define a 2π-periodic function f as follows:

f(t) =


1, if 0 < t < π;
−1, if −π < t < 0;
0, if t = −π, t = 0, or t = π.

8. Show that f(x) =
4
π

∞∑
n=1

sin(2n− 1)x
2n− 1

for every x ∈ R.

Solution: Since this function is odd about x = 0, we can find its Fourier coefficients as
follows:

a0 = an = 0; bn =
2
π

∫ π

0
f(t) sinnt dt =

2
π

[− cosnt
n

]∣∣∣∣π
0

=
{

4
πn , if n is odd,
0, if n is even.

The function f has bounded variation on every subinterval, so Jordan’s test implies that its
Fourier series converges to [f(x+) + f(x−)]/2, which is the same as f(x), at each x ∈ R. 2

9. Let sn(x) be the partial sum of the first n terms of the Fourier series of the function f defined
above. Show that for any ε > 0,

lim
n→∞

[
max
|x|<ε

sn(x)− min
|x|<ε

sn(x)

]
=

4
π

∫ π

0

sin t
t

dt.

(Hint: see problem 11.19 on pp.338–339 of the text.)
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This result is known as Gibbs’ phenomenon.

Solution: First we represent the partial sum as an integral and use Equation 15 on p.196
of the text:

sn(x) def=
4
π

n∑
k=1

sin(2k − 1)x
2k − 1

=
4
π

n∑
k=1

∫ x

0
cos(2k − 1)t dt =

2
π

∫ x

0

sin 2nt
sin t

dt.

This partial sum is a differentiable function, so its maxima and minima lie at critical points.
Using the Fundamental Theorem of Calculus, we differentiate the integral and compute
s′n(x) = (2 sin 2nx)/(π sinx). For 0 < x < π, this vanishes on the set {xm = mπ

2n : m =
1, 2, . . . , 2n−1}. Now xm will be a local maximum at odd m and a local minimum at even m;
this is easily seen from checking the sign of s′n(x) on the intervals between adjacent xm. Using
the fact that sin t increases on [0, π

2 ], we can conclude that {sn(x2m)} ↑ and {sn(x2m−1)} ↓
as m increases; thus, the maximum of sn(x) on (0, π

2 ) is attained at x1 = π
2n . From the same

fact, we conclude that sn(x) > 0 for 0 < x < π
2 .

Since s′n is an even function, sn is an odd function, so that −xm will be a local minimum at
odd m and a local maximum at even m. Thus, the minimum of sn(x) on (−π

2 , 0) is attained at
− π

2n , and it is −sn( π
2n). This negative number is smaller than any of the positive values taken

by sn(x) on x ∈ (0, π
2 ), so −sn( π

2n) is the minimum of sn(x) on (−π
2 ,

π
2 ). Similarly, sn( π

2n) is
the maximum of sn(x) on (−π

2 ,
π
2 ). Hence, as soon as n > 0 is so large that π

2n < ε < π
2 , we

will have

max
|x|<ε

sn(x)−min
|x|<ε

sn(x) = 2sn(
π

2n
) =

4
π

∫ π
2n

0

sin 2nt
sin t

dt =
4

2nπ

∫ π

0

sinu
sin u

2n

du =
4
π

∫ π

0

(
u
2n

sin u
2n

)
sinu
u

du.

We have substituted t ← 1
2nu to get the last expression. If we define v/ sin v = 1 at v = 0,

then the (continuous) functions in parentheses tends uniformly to 1 on the compact interval
[0, π] as n → ∞. Furthermore, sin u

u is continuous and bounded on (0, π], hence is Lebesgue
integrable on [0, π]. Hence by the Bounded Convergence Theorem, we have

lim
n→∞

[
max
|x|<ε

sn(x)− min
|x|<ε

sn(x)

]
=

4
π

∫ π

0

sin t
t

dt.

2

10. Prove that if f ∈ L([0, 2π]) and f ′(x0) exists at some point x0 ∈ (0, 2π), then the Fourier
series generated by f converges at x0.

Solution: We may assume without loss that f(x0) = 0, since if we prove the result for
f0(x)

def= f(x) − f(x0) we will get the Fourier series for f by adding the constant f(x0) to
the Fourier series for f0.
We now define a 2π-periodic function h by specifying its values on [0, 2π] as follows:

h(t) = f(t+ x0), if 0 < t < 2π; h(0) = h(2π) = 0.

Then there is some 2π-periodic function g = g(t) such that h(t) =
(
e−it − 1

)
g(t). Note that

the quotient function g is Lebesgue integrable, since h(t)/
(
e−it − 1

)
has a finite limit as t→ 0.

But then the exponential Fourier coefficients for h and g are related by ĥ(k) = ĝ(k+1)− ĝ(k),
so that we obtain a telescoping Fourier series for h(0):

m−1∑
k=−n

ĥ(k) = ĝ(m)− ĝ(−n).
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By the Riemann-Lebesgue lemma, this series converges to zero as n,m→∞ in any manner.
To complete the proof, note that the Fourier series for h(0) is just the Fourier series for f(x0).
2
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