
Ma 4121: Introduction to Lebesgue Integration

Solutions to Homework Assignment 6

Prof. Wickerhauser

Due Thursday, April 25th, 2013

Please return your solutions to the instructor by the end of class on the due date. You may collaborate
on these problems but you must write up your own solutions. Late homework will not be accepted.

1. For fixed c ∈ (0, 1), define f : R2 → R as follows:

f(x, y) def=
{

(1− y)c/(x− y)c, if 0 < x < 1 and 0 ≤ y < x;
0, otherwise.

Prove that f ∈ L(R2) and evaluate
∫
R2 f .

Solution: In fact, f is an upper function. For ε > 0, define

fε(x, y) def=
{

(1− y)c/(x− y)c, if 0 < x < 1 and 0 ≤ y < x− ε;
0, otherwise.

Then fε ≥ 0 and fε ↗ f as ε → 0. Also, fε is bounded and vanishes outside a bounded triangular
region, so fε ∈ L(R2) for each ε > 0.

Finally, use Fubini’s theorem to calculate∫
R2

fε =
∫ 1−ε

y=0

∫ 1

x=y+ε

(1− y)c

(x− y)c
=
∫ 1−ε

y=0

[
(1− y)c(x− y)1−c

1− c

]1
x=y+ε

=
∫ 1−ε

y=0

(1− y)c[(1− y)1−c − ε1−c]
1− c

=
∫ 1−ε

y=0

1− y

1− c
− ε1−c

∫ 1−ε

y=0

(1− y)c

1− c

=
[
y − y2/2

1− c

]1−ε

y=0

− ε1−c

∫ 1−ε

y=0

(1− y)c

1− c
= (1− ε)(

1
2

+
ε

2
)− ε1−c

∫ 1−ε

y=0

(1− y)c

1− c
.

This evidently converges to 1/2 as ε→ 0, showing that f ∈ L(R2) with
∫

f = 1/2.

Note that integration in x first, then in y, gives a simple antiderivative. To find the limits of integration,
it is useful to draw a graph of the triangular region. 2

2. Suppose that S ⊂ R2 is a measurable set with the property that λ(Sy) = 0 for almost every y ∈ R,
where λ is 1-dimensional Lebesgue measure on R, and

Sy
def= {x ∈ R : (x, y) ∈ S}.

Prove that the 2-dimensional Lebesgue measure of S is zero. (Note: This is a partial converse to
Theorem 15.5 on p.412 of our text.)

1



Solution: Put f(x, y) def= 1S(x, y). Then f ∈M(R2). It suffices to show that
∫
R2 f = 0.

Suppose first that S is bounded. Then f ∈ L(R2) and we may use Fubini’s theorem to evaluate∫
R2

f =
∫

y∈R

G(y) = 0, since G(y) =
∫

x∈R

f(x, y) = λ(Sy) = 0, a.e.y ∈ R.

Now write S =
⋃∞

n=1 Sn, where Sn = S ∩ [−n, n]2. Then for each n, Sn is bounded and satisfies the
same hypotheses as S, so it has 2-dimensional Lebesgue measure 0. Thus the 2-dimensional Lebesgue
measure of S is at most the sum of countably many 0s, hence is zero. 2

3. Suppose that fi : R→ R is defined and bounded on the compact interval [ai, bi] ⊂ R. If fi ∈ L([ai, bi])
for i = 1, . . . , n, prove that∫

Q

f1(x1) · · · fn(xn) d(x1, . . . , xn) =

(∫ b1

a1

f1(x1) dx1

)
· · ·

(∫ bn

an

fn(xn) dxn

)
,

where Q = [a1, b1]× · · · × [an, bn] ⊂ Rn.

Solution: We prove this by induction on n. It is evidently true when n = 1, for then both sides are
the same.

Suppose the result holds for n−1; let g : Rn−1 → R be defined by g(x1, . . . , xn−1) = f(x1) · · · f(xn−1).
This g is defined and bounded on Qn−1

def= [a1, b1]× · · · × [an−1, bn−1]. For any fn ∈ L([an, bn]), the
function gfn = g(x1, . . . , xn−1)fn(xn) belongs to L(Q) by Lebesgue’s dominated convergence theorem
and we have∫

Q

g(x1, . . . , xn−1)fn(xn) d(x1, . . . , xn) =

(∫
Qn−1

g(x1, . . . , xn−1) d(x1, . . . , xn−1)

)[∫ bn

an

fn(xn) dxn

]
,

by Fubini’s theorem. Here g(x1, . . . , xn−1) may be removed from the integral in xn since it has no
xn-dependence, and the remaining function fn is Lebesgue integrable by hypothesis. The result for n
now follows from the inductive hypothesis. 2

4. (a) Prove that
∫
R2 e−x2−y2

= π by transforming the integral to polar coordinates

(b) Use part(a) to prove that
∫
R

e−x2
=
√

π.

(c) Use part (b) to prove that
∫
Rn e−‖x‖

2
= πn/2.

(d) Evaluate
∫
R

e−tx2
for t > 0, and find t for which the value is 1.

Solution: (a) R2 = {(x, y) = (r cos θ, r sin θ) : 0 < r <∞, 0 ≤ θ < 2π} ∪ {(0, 0)}, and this mapping
has Jacobian

J =
(

cos θ sin θ
−r sin θ r cos θ

)
with determinant |J | = |r| = r. Hence, by eq.30 on p.429 of our text,∫

R2
e−x2−y2

=
∫
R2

e−r2
|J |,

which we may evaluate by Fubini’s theorem as∫
R2

e−x2−y2
d(x, y) =

∫ 2π

θ=0

[∫ ∞

r=0

e−r2
r dr

]
dθ = 2π

[
1
2

∫ ∞

u=0

e−u du

]
= π,
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after substituting r2 ← u and r dr ← 1
2du.

(b) Since e−x2−y2
= e−x2

e−y2
, by using the results of exercise 3 above we get∫

R2
e−x2−y2

=
(∫

x∈R

e−x2
)(∫

y∈R

e−y2
)

=
(∫

x∈R

e−x2
)2

,

since the two integrals are the same except for the name of the variable. Combine with part (a) and
the observation that the integrals must be positive to conclude that

∫
R

e−x2
=
√

π.

(c) Another application of exercise 3 above gives∫
x∈Rn

e−‖x‖
2

=
(∫

x∈R

e−x2
)n

= πn/2,

where the last equality follows from part (b).

(d) Write f(x) = e−tx2
for t > 0, and put g(x) def= f(x/

√
t) = e−x2

. Thus, using part (b) above and
the equation on p.407 of our text gives

√
π =

∫
x∈R

e−x2
=
∫

x∈R

g(x) = (
√

t)1
∫

x∈R

f(x) =
√

t

∫
x∈R

e−tx2
.

Thus
∫

x∈R
e−tx2

=
√

π/
√

t, and choosing t = π gives∫
x∈R

e−πx2
= 1.

2

5. Let Vn(a) denote the volume of the ball of radius a in Rn, that is, the n-dimensional Lebesgue measure
of the open set {x ∈ Rn : ‖x‖ < a}.
(a) Prove that Vn(a) = anVn(1).

(b) Prove that, for n ≥ 3, we have the formula

Vn(1) = Vn−2(1)×
∫ 2π

0

[∫ 1

0

(1− r2)n/2−1r dr

]
dθ = Vn−2(1)

2π

n
.

(c) Use the recursion in part (b) to conclude that

Vn(1) =
πn/2

Γ( 1
2n + 1)

,

where Γ is the special function defined on p.277 of our text.

Solution: In the following, write ‖x‖ =
√

x2
1 + · · ·+ x2

n for x ∈ Rn, and let

B = Bn = Bn(0; 1) = {x ∈ Rn : ‖x‖ < 1} ⊂ Rn

denote the unit open n-ball centered at 0.

(a) Observe that

Vn(1) =
∫

x∈Rn

1B(x) and Vn(a) =
∫

x∈Rn

1B(x/a),

so Vn(a) = anVn(1) by the relation on p.407 of our textbook.
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(b) Write

Bn(0; 1) = {x ∈ Rn : ‖x‖2 < 1} = {(y, z) ∈ Rn : y ∈ Rn−2, z ∈ R2, ‖y‖2 + ‖z‖2 < 1}
= {(y, z) ∈ Rn : y ∈ R2, ‖y‖2 < 1; z ∈ Rn−2, ‖z‖2 < 1− ‖y‖2}
= {(y, z) ∈ Rn : y ∈ B2(0; 1), z ∈ Bn−2(0; 1− ‖y‖2)}.

This suggests a method to evaluate Vn(1) by iterated integration:

Vn(1) =
∫

y∈B2(0;1)

∫
z∈Bn−2(0;1−‖y‖2)

1 =
∫

y∈B2(0;1)

Vn−2(
√

1− ‖y‖2),

so using the scaling relation in part (a), we get

Vn(1) =
∫

y∈B2(0;1)

(1− ‖y‖2)(n−2)/2Vn−2(1) = Vn−2(1)
∫

y∈B2(0;1)

(1− ‖y‖2)n/2−1.

Evaluating the integral in polar coordinates gives∫ 2π

θ=0

∫ 1

r=0

(1− r2)n/2−1r drdθ = 2π
1
2

∫ 1

u=0

(1− u)n/2−1 du =
2π

n
,

using elementary methods and the substitution r ←
√

u. Thus

Vn(1) =
2π

n
Vn−2(1).

(c) Prove this by induction on n.

First recall that Γ(1) = 1 and Γ( 1
2 ) =

√
π. Also, Γ(1 + x) = xΓ(x) for all positive real x, and thus

Γ(n + 1) = n! for all nonnegative integers n. (Many references list these special values and relations,
or else they may be derived by elementary methods.)

Check the case n = 1 by noting that

V1(1) = 2 =
√

π
1
2

√
π

=
π1/2

1
2Γ( 1

2 )
=

π1/2

Γ( 1
2 + 1)

Next, check the case n = 2 by observing that

V2(1) = π =
π2/2

1Γ(1)
=

π2/2

Γ(2)
=

π2/2

Γ( 2
2 + 1)

.

Now suppose that n > 2 and that the equation holds for all k = 1, 2, . . . , n− 1. Then by (b),

Vn(1) =
2π

n
Vn−2(1) =

(2π)π(n−2)/2

nΓ(n−2
2 + 1)

=
πn/2

n
2 Γ(n

2 )
=

πn/2

Γ(n
2 + 1)

,

proving the inductive step. 2

6. Suppose that f : R2 → R is defined by

f(x, y) =
{

ey sinx, if x is rational;
e−x2−y2

, if x is irrational.

Prove that f ∈ L(R2) and compute
∫
R2 f .
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Solution: Use the Tonelli-Hobson test, Th.15.8 on p.415 of our text. Since Q has 1-dimensional
measure zero, the set Q ×R has 2-dimensional measure zero by exercise 2 above, so f agrees almost
everywhere with the function g(x, y) = e−x2−y2

.

Now g > 0 on R2, so |g| = g, and the iterated integral exists:∫
y∈R

[∫
x∈R

|g(x, y)|
]

=
∫

y∈R

√
π e−y2

= π,

using the results of exercise 4 above. Conclude that g ∈ L(R2), so f ∈ L(R2), with
∫

f =
∫

g =
∫
|g| =

π. 2

7. Let f(x, y) = (x2 − y2)/(x2 + y2)2 for 0 ≤ x ≤ 1, 0 < y ≤ 1, and put f(0, 0) = 0. Prove that both
iterated integrals ∫ 1

y=0

[∫ 1

x=0

f(x, y) dx

]
dy, and

∫ 1

x=0

[∫ 1

y=0

f(x, y) dy

]
dx

exist but are not equal. Conclude that f /∈ L([0, 1]× [0, 1]).

Solution: First note that for (x, y) 6= (0, 0),

∂

∂y

(
y

x2 + y2

)
=

x2 − y2

(x2 + y2)2
=

∂

∂x

(
−x

x2 + y2

)
.

We may thus compute the iterated integrals by antidifferentiation:∫ 1

x=0

(∫ 1

y=0

x2 − y2

(x2 + y2)2
dy

)
dx =

∫ 1

x=0

[
y

x2 + y2

]1
y=0

dx =
∫ 1

x=0

1
1 + x2

dx > 0,

while ∫ 1

y=0

(∫ 1

x=0

x2 − y2

(x2 + y2)2
dx

)
dy =

∫ 1

y=0

[
−x

x2 + y2

]1
y=0

dx =
∫ 1

y=0

−1
1 + y2

dy < 0,

where both integrals exist because the integrands are continuous and bounded. 2

8. Let f(x, y) = e−xy sinx sin y for x ≥ 0 and y ≥ 0, and let f(x, y) = 0 otherwise. Prove that both
iterated integrals ∫

y∈R

[∫
x∈R

f(x, y) dx

]
dy, and

∫
x∈R

[∫
y∈R

f(x, y) dy

]
dx

exist and are equal, but that f /∈ L(R2). Explain why this does not contradict the Tonelli-Hobson test
(theorem 15.8, p.415).

Solution: If one of the iterated integrals exists, then so will the other, and they will be equal, for
the function satisfies f(x, y) = f(y, x) for all (x, y) ∈ R2.

In Gradshteyn and Ryzhik, Table of Integrals, Series, and Products, 5th edition, equation 3.893(1) on
p.512 implies ∫ ∞

y=0

e−xy sin y dy =
1

1 + x2
, if x > 0,

so that ∫ ∞

y=0

(∫ ∞

x=0

e−xy sinx sin y dx

)
dy =

∫ ∞

x=0

sinx

1 + x2
dx <∞,
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by Lebesgue’s dominated convergence theorem and comparison with 1/(1 + x2) ∈ L(R).

Now suppose toward contradiction that |f | ∈ L(R2). Let

B
def= {t ∈ R+ : | sin t| ≥ 1√

2
} =

∞⋃
k=0

Bk,

where Bk
def= [(k + 1

4 )π, (k + 3
4 )π]. Then for (x, y) ∈ B×B ⊂ R2, we have | sinx sin y| ≥ 1

2 . We define
a function s : R2 → R as follows:

s(x, y) =
{

min{|f(s, t)| : (s, t) ∈ Bm ×Bn}, if (x, y) ∈ Bm ×Bn,
0, otherwise.

Then s ∈M(R2) since it is a countable sum of step functions, and 0 ≤ s ≤ |f | on R2. Thus |f | ∈ L(R2)
would imply that s ∈ L(R2). But in fact

s(x, y) =
1
2
e−(m+ 3

4 )(n+ 3
4 )π2

, if (x, y) ∈ Bm ×Bn,

and |Bm ×Bn| = π2/4 for every n, m = 0, 1, 2, . . ., so∫ ∫
R2

s =
π2

4

∞∑
m=0

∞∑
n=0

1
2
e−( 3

4+m)( 3
4+n)π2

≥ π2

8

∞∑
m=1

∞∑
n=1

e−mnπ2

Finally, we may use the integral test to show that the double series diverges, for∫ ∫
x>0,y>0

e−xyπ2
=

1
π2

∫ ∞

x=0

(∫ ∞

y=0

e−xy dy

)
dx =

1
π2

∫ ∞

x=0

1
x

dx = +∞.

Hence s /∈ L(R2). Conclude that |f | /∈ L(R2), and thus that f /∈ L(R2).

This f is not a counterexample to the Tonelli-Hobson theorem precisely because |f | /∈ L(R2), and so
neither of the iterated integrals for |f | will be finite. 2

9. Let I = [0, 1] × [0, 1], let f(x, y) = (x − y)/(x + y)3 if (x, y) ∈ I \ {(0, 0)}, and let f(0, 0) = 0. Prove
that f /∈ L(I) by considering the integrals∫ 1

y=0

[∫ 1

x=0

f(x, y) dx

]
dy, and

∫ 1

x=0

[∫ 1

y=0

f(x, y) dy

]
dx

Solution: From Gradshteyn and Ryzhik, Table of Integrals, Series, and Products, 5th edition, we
have ∫

dx

(y + x)3
=

1
−2(y + x)2

; (2.111(1), p.68)

and ∫
x dx

(y + x)3
= −

(
x +

y

2

) 1
(y + x)2

; (2.114(2), p.69)

Thus for y > 0, we have∫ 1

0

(x− y)
(x + y)3

dx = −
[

x + y
2

(x + y)2

]1
x=0

+
[ y

2

(x + y)2

]1
x=0

=
−1

(1 + y)2
.

Similary, by exchanging x↔ y and noting that f(x, y) = −f(y, x) for all x, y, we get∫ 1

0

(x− y)
(x + y)3

dy =
1

(1 + x)2
, for x > 0.
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Both of these functions have elementary antiderivatives, with which we may compute∫ 1

y=0

[∫ 1

x=0

f dx

]
dy =

[
1

1 + y

]1
0

= −1
2
, while

∫ 1

x=0

[∫ 1

y=0

f dy

]
dx =

[
−1

1 + x

]1
0

= +
1
2
.

Since these are not equal, the original function f cannot belong to L(I) or else there would be a
contradiction with Fubini’s theorem. 2

10. Let I = [0, 1]×[1,+∞) and let f(x, y) = e−xy−2e−2xy if (x, y) ∈ I. Prove that f /∈ L(I) by considering
the integrals ∫ ∞

y=1

[∫ 1

x=0

f(x, y) dx

]
dy, and

∫ 1

x=0

[∫ ∞

y=1

f(x, y) dy

]
dx

Solution: Function f is continuous on I, hence it is measurable. It is also bounded, but I is not
bounded. Were f ∈ L(I), it would satisfy Fubini’s theorem and we would have∫

x

(∫
y

f

)
=
∫ ∫

I

f =
∫

y

(∫
x

f

)
.

But ∫
x

(∫
y

f

)
=
∫ 1

x=0

(∫ ∞

y=1

f(x, y) dy

)
dx =

∫ 1

0

e−x

x
[e−x − 1] dx,

while ∫
y

(∫
x

f

)
=
∫ ∞

y=1

(∫ 1

x=0

f(x, y) dx

)
dy =

∫ ∞

1

e−y

y
[e−y − 1] dy =

∫ 1

0

e−1/z

z
[e−1/z − 1] dz,

as shown by elementary methods, with the last equality following from the substitution y ← 1/z.

But for all z ∈ (0, 1), the continuous and bounded integrand functions satisfy

1
z
e−1/z[e−1/z − 1] >

1
z
e−z[e−z − 1],

so the two iterated integrals exist but cannot be equal. 2
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