Ma 416: Complex Variables Midterm Examination

Prof. Wickerhauser

Thursday, October 20th, 2005

1. Find the real parts, imaginary parts, and absolute values of the complex numbers $z=(1-i) /(1+i)$ and $w=\exp (i \pi / 3)$.
2. Find the domain of convergence of the following power series:

$$
\begin{array}{ll}
\text { (a) } \sum_{n=0}^{\infty} \frac{(z-2)^{n}}{n} & \text { (b) } \sum_{n=0}^{\infty} \frac{z^{n}}{n!}
\end{array}
$$

3. Suppose that an entire analytic function f has arbitrarily small periods. That is, suppose that there is an infinite sequence $\left\{p_{k}: k \in \mathbf{N}\right\}$ with $\left|p_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$ such that $f\left(z+p_{k}\right)=f(z)$ for all k and all $z \in \mathbf{C}$. Prove that f must be constant.
4. Let $C=\{z:|z|=r\}$ be a circle of radius $r>0$, centered at the origin in \mathbf{C}, equipped with the positive (counterclockwise) orientation. Let $n>1$ be an integer. Compute $\int_{C}\left(1 / z^{n}\right) d z$. (Hint: parametrize C.)
5. Let $D \subset \mathbf{C}$ be the closed disk of radius R centered at 0 . Suppose that $f=f(z)$ is analytic on D and satisfies $|f(z)| \leq M$ for all $z \in D$. Prove that $\left|f^{\prime \prime \prime}(0)\right| \leq 6 M / R^{3}$.
6. Classify the following singularities as removable, poles, or essential. If the singularity is a pole, state its order.
(a) $(\sin z) / z$ at $z=0$
(b) $\sin (1 / z)$ at $z=0$
(c) $1 /(\sin z)^{3}$ at $z=0$
7. Use the Residue Theorem to evaluate the improper integral $\int_{-\infty}^{\infty}\left(x^{2}+1\right)^{-1} d x$.
